
curately reflect the dynamic threat landscape faced by
modern NIDS.
REFERENCES
Apruzzese, G., Andreolini, M., Marchetti, M., Venturi, A.,
and Colajanni, M. (2020). Deep reinforcement adver-
sarial learning against botnet evasion attacks. IEEE
Transactions on Network and Service Management,
17(4):1975–1987.
Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and
McGuinness, K. (2020). Pseudo-labeling and con-
firmation bias in deep semi-supervised learning. In
2020 International joint conference on neural net-
works (IJCNN), pages 1–8. IEEE.
Bai, T., Luo, J., Zhao, J., Wen, B., and Wang, Q. (2021).
Recent advances in adversarial training for adversarial
robustness. arXiv preprint arXiv:2102.01356.
Bastian, N., Bierbrauer, D., McKenzie, M., and Nack, E.
(2023). Aci iot network traffic dataset 2023.
Chale, M., Cox, B., Weir, J., and Bastian, N. D. (2024).
Constrained optimization based adversarial example
generation for transfer attacks in network intrusion
detection systems. Optimization Letters, 18(9):2169–
2188.
Gama, J.,
ˇ
Zliobait
˙
e, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. (2014). A survey on concept
drift adaptation. ACM computing surveys (CSUR),
46(4):1–37.
Guo, S., Zhao, J., Li, X., Duan, J., Mu, D., and Jing,
X. (2021). A black-box attack method against
machine-learning-based anomaly network flow detec-
tion models. Security and Communication Networks,
2021(1):5578335.
Hammar, K. and Stadler, R. (2020). Finding effective se-
curity strategies through reinforcement learning and
self-play. In 2020 16th International Conference on
Network and Service Management (CNSM), pages 1–
9. IEEE.
Hore, S., Ghadermazi, J., Paudel, D., Shah, A., Das, T.,
and Bastian, N. (2025). Deep packgen: A deep rein-
forcement learning framework for adversarial network
packet generation. ACM Transactions on Privacy and
Security, 28(2):1–33.
Huang, W., Peng, X., Shi, Z., and Ma, Y. (2020). Adver-
sarial attack against lstm-based ddos intrusion detec-
tion system. In 2020 IEEE 32nd International Con-
ference on Tools with Artificial Intelligence (ICTAI),
pages 686–693. IEEE.
Jaw, E. and Wang, X. (2021). Feature selection and
ensemble-based intrusion detection system: an ef-
ficient and comprehensive approach. Symmetry,
13(10):1764.
Kuppa, A. and Le-Khac, N.-A. (2022). Learn to adapt: Ro-
bust drift detection in security domain. Computers and
Electrical Engineering, 102:108239.
Lu, N., Zhang, G., and Lu, J. (2014). Concept drift detec-
tion via competence models. Artificial Intelligence,
209:11–28.
Nasr, M., Bahramali, A., and Houmansadr, A. (2021).
Defeating {DNN-Based} traffic analysis systems in
{Real-Time} with blind adversarial perturbations. In
30th USENIX Security Symposium (USENIX Security
21), pages 2705–2722.
Ouali, Y., Hudelot, C., and Tami, M. (2020). An overview
of deep semi-supervised learning. arXiv preprint
arXiv:2006.05278.
Piplai, A., Anoruo, M., Fasaye, K., Joshi, A., Finin, T., and
Ridley, A. (2022). Knowledge guided two-player rein-
forcement learning for cyber attacks and defenses. In
2022 21st IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 1342–
1349.
Rahman, M. S., Coull, S., Yu, Q., and Wright, M. (2025).
Madar: Efficient continual learning for malware anal-
ysis with diversity-aware replay. arXiv preprint
arXiv:2502.05760.
Sadeghzadeh, A. M., Shiravi, S., and Jalili, R. (2021). Ad-
versarial network traffic: Towards evaluating the ro-
bustness of deep-learning-based network traffic clas-
sification. IEEE Transactions on Network and Service
Management, 18(2):1962–1976.
Settles, B. (2009). Active learning literature survey.
Shalev-Shwartz, S. et al. (2012). Online learning and on-
line convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194.
Sharafaldin, I., Lashkari, A. H., Ghorbani, A. A., et al.
(2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. ICISSp,
1(2018):108–116.
Shayesteh, B., Fu, C., Ebrahimzadeh, A., and Glitho, R. H.
(2022). Automated concept drift handling for fault
prediction in edge clouds using reinforcement learn-
ing. IEEE Transactions on Network and Service Man-
agement, 19(2):1321–1335.
Shyaa, M. A., Ibrahim, N. F., Zainol, Z., Abdullah, R., An-
bar, M., and Alzubaidi, L. (2024). Evolving cyberse-
curity frontiers: A comprehensive survey on concept
drift and feature dynamics aware machine and deep
learning in intrusion detection systems. Engineering
Applications of Artificial Intelligence, 137:109143.
Team., M. D. R. (2021). Cyberbattlesim. https://github.
com/microsoft/cyberbattlesim.
Wu, Y., Dou, S., Zou, D., Yang, W., Qiang, W., and Jin,
H. (2022). Contrastive Learning for Robust Android
Malware Familial Classification. IEEE Transactions
on Dependable and Secure Computing, pages 1–14.
Yue, Y., Chen, X., Han, Z., Zeng, X., and Zhu, Y. (2022).
Contrastive Learning Enhanced Intrusion Detection.
IEEE Transactions on Network and Service Manage-
ment, 19(4):4232–4247.
Zhou, Z., Liu, G., and Tang, Y. (2023). Multi-agent
reinforcement learning: Methods, applications, vi-
sionary prospects, and challenges. arXiv preprint
arXiv:2305.10091.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
554