
ings. Hence, our future research will address this
by incorporating additional IoT anomaly detection
datasets, such as IoT-23 and N-BaIoT. By validating
our models across multiple datasets, we hope to en-
hance the robustness and applicability of our conclu-
sions, thereby providing a more comprehensive un-
derstanding of the performance of deep learning tech-
niques in diverse IoT environments.
REFERENCES
Mechanisms of Action (MoA) Prediction.
Alkadi, S., Al-Ahmadi, S., and Ben Ismail, M. M. (2023).
Toward improved machine learning-based intrusion
detection for internet of things traffic. Computers,
12(8).
Badirli, S., Liu, X., Xing, Z., Bhowmik, A., Doan, K., and
Keerthi, S. S. (2020). Gradient boosting neural net-
works: Grownet. arXiv preprint arXiv:2002.07971.
Baldi, P., Sadowski, P., and Whiteson, D. (2014). Searching
for exotic particles in high-energy physics with deep
learning. Nature communications, 5(1):4308.
Bovenzi, G., Aceto, G., Ciuonzo, D., Persico, V., and
Pescap
´
e, A. A Hierarchical Hybrid Intrusion Detec-
tion Approach in IoT Scenarios. In GLOBECOM
2020 - 2020 IEEE Global Communications Confer-
ence, pages 1–7.
Breiman, L. (2001). Random forests. Machine learning,
45:5–32.
Bridle, J. (1989). Training stochastic model recognition al-
gorithms as networks can lead to maximum mutual in-
formation estimation of parameters. Advances in neu-
ral information processing systems, 2.
Chaparadza, R., Wodczak, M., Ben Meriem, T., De Lutiis,
P., Tcholtchev, N., and Ciavaglia, L. (2013). Stan-
dardization of resilience & survivability, and auto-
nomic fault-management, in evolving and future net-
works: An ongoing initiative recently launched in etsi.
In 2013 9th International Conference on the Design
of Reliable Communication Networks (DRCN), pages
331–341.
Chatterjee, A. and Ahmed, B. S. (2022). IoT anomaly de-
tection methods and applications: A survey. Internet
of Things, 19.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence
research, 16:321–357.
Churcher, A., Ullah, R., Ahmad, J., ur Rehman, S., Masood,
F., Gogate, M., Alqahtani, F., Nour, B., and Buchanan,
W. J. (2021). An experimental analysis of attack clas-
sification using machine learning in iot networks. Sen-
sors, 21(2).
Ferrag, M. A., Maglaras, L., Moschoyiannis, S., and Jan-
icke, H. (2020). Deep learning for cyber security in-
trusion detection: Approaches, datasets, and compar-
ative study. Journal of Information Security and Ap-
plications, 50:102419.
Garcia, S., Parmisano, A., and Erquiaga, M. J. (2020). IoT-
23: A labeled dataset with malicious and benign IoT
network traffic. Type: dataset.
Giannoni, F., Mancini, M., and Marinelli, F. (2018).
Anomaly detection models for iot time series data.
arXiv preprint arXiv:1812.00890.
Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko, A.
(2021). Revisiting deep learning models for tabular
data. Advances in Neural Information Processing Sys-
tems, 34:18932–18943.
G
¨
ornitz, N., Braun, M., and Kloft, M. (2015). Hidden
markov anomaly detection. In International confer-
ence on machine learning, pages 1833–1842. PMLR.
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshi-
rani, R., and Friedman, J. (2009). Boosting and addi-
tive trees. The elements of statistical learning: data
mining, inference, and prediction, pages 337–387.
Hill, D. J., Minsker, B. S., and Amir, E. (2007). Real-time
bayesian anomaly detection for environmental sensor
data. In Proceedings of the Congress-International
Association for Hydraulic Research, volume 32, page
503.
Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya,
D. K., and Kalita, J. K. (2014). Network attacks: Tax-
onomy, tools and systems. Journal of Network and
Computer Applications, 40:307–324.
Hounsell, N., Shrestha, B., Piao, J., and McDonald, M.
(2009). Review of urban traffic management and the
impacts of new vehicle technologies. IET intelligent
transport systems, 3(4):419–428.
Ibitoye, O., Shafiq, O., and Matrawy, A. (2019). Analyz-
ing adversarial attacks against deep learning for intru-
sion detection in iot networks. In 2019 IEEE global
communications conference (GLOBECOM), pages 1–
6. IEEE.
Iliyasu, A. S. and Deng, H. (2022). N-gan: a novel
anomaly-based network intrusion detection with gen-
erative adversarial networks. International Journal of
Information Technology, 14(7):3365–3375.
Imrana, Y., Xiang, Y., Ali, L., and Abdul-Rauf, Z. (2021).
A bidirectional lstm deep learning approach for in-
trusion detection. Expert Systems with Applications,
185:115524.
Ishii, S. and Ljunggren, D. (2021). A comparative analysis
of robustness to noise in machine learning classifiers.
Khan, A. R., Kashif, M., Jhaveri, R. H., Raut, R., Saba,
T., and Bahaj, S. A. (2022). Deep learning for intru-
sion detection and security of internet of things (iot):
Current analysis, challenges, and possible solutions.
Security and Communication Networks, 2022.
Kohavi, R. et al. (1996). Scaling up the accuracy of naive-
bayes classifiers: A decision-tree hybrid. In Kdd, vol-
ume 96, pages 202–207.
Kolias, C., Kambourakis, G., Stavrou, A., and Voas, J.
(2017). Ddos in the iot: Mirai and other botnets. Com-
puter, 50(7):80–84.
Koroniotis, N., Moustafa, N., Sitnikova, E., and Turnbull,
B. (2019). Towards the development of realistic botnet
dataset in the Internet of Things for network forensic
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
642