
Campbell, J. Y. and Shiller, R. J. (1988). The dividend-
price ratio and expectations of future dividends and
discount factors. The Review of financial studies,
1(3):195–228.
Cao, C., Field, L. C., and Hanka, G. (2004). Does insider
trading impair market liquidity? evidence from ipo
lockup expirations. Journal of Financial and Quanti-
tative Analysis, 39(1):25–46.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discov-
ery and data mining, pages 785–794.
Cohen, L., Malloy, C., and Pomorski, L. (2012). Decoding
inside information. Journal of Finance, 67.
Cumming, D., Johan, S., and Li, D. (2011). Exchange trad-
ing rules and stock market liquidity. Journal of finan-
cial economics, 99(3):651–671.
Deng, S., Wang, C., Fu, Z., et al. (2021). An intelligent
system for insider trading identification in chinese se-
curity market. Computational economics, 57(2):593–
616.
Deng, S., Wang, C., Li, J., et al. (2019). Identification of
insider trading using extreme gradient boosting and
multi-objective optimization. Information (Basel),
10(12):367–.
Easley, D., Kiefer, N. M., O’Hara, M., et al. (1996). Liquid-
ity, information, and infrequently traded stocks. The
Journal of Finance, 51.
Fishman, M. J. and Hagerty, K. M. (1995). The mandatory
disclosure of trades and market liquidity. The Review
of financial studies, 8(3):637–676.
Fudenberg, D. and Liang, A. (2019). Predicting and under-
standing initial play. The American economic review,
109(12):4112–4141.
Gangopadhyay, P. and Yook, K. (2022). Profits to oppor-
tunistic insider trading before and after the dodd-frank
act of 2010. Journal of Financial Regulation and
Compliance, 30.
Ge, X. and Smyth, P. (2000). Deformable markov model
templates for time-series pattern matching. In Pro-
ceedings of the sixth ACM SIGKDD international con-
ference on knowledge discovery and data mining, Kdd
’00, pages 81–90. Acm.
Gelman, A. (2008). Scaling regression inputs by dividing
by two standard deviations. Statistics in medicine,
27(15):2865–2873.
Goldberg, H. G., Kirkland, J. D., Lee, D., et al. (2003). The
nasd securities observation, new analysis and regula-
tion system (sonar). In Iaai, pages 11–18. Citeseer.
Grinblatt, M. S., Masulis, R. W., and Titman, S. (1984). The
valuation effects of stock splits and stock dividends.
Journal of financial economics, 13(4):461–490.
Hamilton, J. D. (1989). A new approach to the economic
analysis of nonstationary time series and the business
cycle. Econometrica, 57(2):357–384.
Hand, D. J. (2009). Forecasting with exponential smooth-
ing: The state space approach by rob j. hyndman, anne
b. koehler, j. keith ord, ralph d. snyder. International
Statistical Review, 77(2):315–316.
Harvey, C. R., Liu, Y., and Zhu, H. (2016). . . . and the
cross-section of expected returns. The Review of Fi-
nancial Studies, 29(1):5–68.
Hou, K., Xue, C., and Zhang, L. (2020). Replicat-
ing anomalies. The Review of financial studies,
33(5):2019–2133.
Huddart, S. J. and Ke, B. (2007). Information asymmetry
and cross-sectional variation in insider trading. Con-
temporary accounting research, 24(1):195–232.
Iskhakov, F., Rust, J., and Schjerning, B. (2020). Machine
learning and structural econometrics: contrasts and
synergies. The econometrics journal, 23(3):S81–s124.
Islam, S. R., Khaled Ghafoor, S., and Eberle, W. (2018).
Mining illegal insider trading of stocks: A proactive
approach. In 2018 IEEE International Conference on
Big Data (Big Data), pages 1397–1406, Ithaca. Ieee.
Jacobs, H. and Weber, M. (2015). On the determinants of
pairs trading profitability. Journal of financial mar-
kets, 23:75–97.
John, K. and Narayanan, R. (1997). Market manipulation
and the role of insider trading regulations. The Journal
of business (Chicago, Ill.), 70(2):217–247.
Kyle, A. S. (1985). Continuous auctions and insider trading.
Econometrica, 53.
Leamer, E. E. (1978). Specification searches: Ad hoc infer-
ence with nonexperimental data. (No Title).
Li, G., Li, Z., Wang, Z., et al. (2022). Identification of
insider trading in the securities market based on multi-
task deep neural network. Computational intelligence
and neuroscience, 2022:4874516–9.
Lin, J.-C. and Howe, J. S. (1990). Insider trading in the otc
market. Journal of Finance, 45(4):1273–84.
Louzada, F. and Ara, A. (2012). Bagging k-dependence
probabilistic networks: An alternative powerful fraud
detection tool. Expert Systems with Applications,
39(14):11583–11592.
Malhotra, A. (2021). A hybrid econometric–machine learn-
ing approach for relative importance analysis: pri-
oritizing food policy. Eurasian economic review,
11(3):549–581.
Manne, H. G. (1966). Insider trading and the stock market.
Free Press.
Mayo, D. G. and Hand, D. (2022). Statistical significance
and its critics: practicing damaging science, or dam-
aging scientific practice? Synthese, 200(3):220.
Meinshausen, N. (2008). Hierarchical testing of variable
importance. Biometrika, 95(2):265–278.
Mushava, J. and Murray, M. (2022). A novel xgboost exten-
sion for credit scoring class-imbalanced data combin-
ing a generalized extreme value link and a modified
focal loss function. Expert Systems with Applications,
202:117233.
Nembrini, S., K
¨
onig, I. R., and Wright, M. N. (2018).
The revival of the Gini importance? Bioinformatics,
34(21):3711–3718.
Neupane, K. and Griva, I. (2024). A random forest approach
to detect and identify unlawful insider trading. arXiv
preprint arXiv:2411.13564.
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
180