future work, we will focus on enhancing the model’s
consistency in classifying well-being comments by
using larger datasets and addressing class imbalances.
ACKNOWLEDGEMENTS
This work was supported by the AÏDA – Artificial
Intelligence for DiAbetes project, under the AL-
KHAWARIZMI programme. The authors gratefully
acknowledge the financial and institutional support
provided for the successful completion of this
research.
REFERENCES
Bokolo, B. G., & Liu, Q. (2023). Deep learning-based
depression detection from social media: Comparative
evaluation of ml and transformer techniques.
Electronics, 12(21), 4396.
Chand, S. P., Arif, H., & Kutlenios, R. M. (2021).
Depression (nursing). Retrieved from https://europe
pmc.org/article/nbk/nbk568733
Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., & Huang, M.
(2023, June). Detecting Reddit users with depression
using a hybrid neural network SBERT-CNN. In 2023
IEEE 11th International Conference on Healthcare
Informatics (ICHI) (pp. 193-199). IEEE.
Coppersmith, G., Dredze, M., Harman, C., & Hollingshead,
K. (2015). From ADHD to SAD: Analyzing the
language of mental health on Twitter through self-
reported diagnoses. In Proceedings of the 2nd
Workshop on Computational Linguistics and clinical
psychology: from linguistic signal to clinical
reality (pp. 1-10).
Dawood Hristova, J. J., & Pérez-Jover, V. (2023).
Psychotherapy with psilocybin for depression:
systematic review. Behavioral Sciences, 13(4), 297.
Devlin, J. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.
Faizi R., El Fkihi S., El Afia A. & Chiheb R. (2017).
Extracting Business Value from Big Data. In
Proceedings of the 29th International Business
Information Management Association Conference
(IBIMA). ISBN: 978-0-9860419-7-6. 3-4 May 2017,
Vienna, Austria
Febriansyah, M. R., Yunanda, R., & Suhartono, D. (2023).
Stress detection system for social media users. Procedia
Computer Science, 216, 672-681.
Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H., &
Eichstaedt, J. C. (2017). Detecting depression and
mental illness on social media: an integrative
review. Current Opinion in Behavioral Sciences, 18,
43-49.
Hassan, N. M., Kassim, E. S., & Said, Y. M. U. (2021).
Financial wellbeing and mental health: a systematic
review. Studies of Applied Economics, 39(4).
Lamichhane, B. (2023). Evaluation of ChatGPT for NLP-
based mental health applications. arXiv preprint
arXiv:2303.15727.
Marwaha, S., Palmer, E., Suppes, T., Cons, E., Young, A.
H., & Upthegrove, R. (2023). Novel and emerging
treatments for major depression. The Lancet,
401(10371), 141-153.
Nadeem, M. (2016). Identifying depression on Twitter.
arXiv preprint arXiv:1607.07384.
Naseem, U., Thapa, S., Zhang, Q., Rashid, J., Hu, L., &
Nasim, M. (2023, November). Temporal tides of
emotional resonance: A novel approach to identify
mental health on social media. In Proceedings of the
11th International Workshop on Natural Language
Processing for Social Media (pp. 1-8).
Rehmani, F., Shaheen, Q., Anwar, M., Faheem, M., &
Bhatti, S. S. (2024). Depression detection with machine
learning of structural and non-structural dual languages.
Healthcare Technology Letters.
Schulz, D. (2020). Depression development: From lifestyle
changes to motivational deficits. Behavioural Brain
Research, 395, 112845.
Shen, G., Jia, J., Nie, L., Feng, F., Zhang, C., Hu, T., ... &
Zhu, W. (2017, August). Depression detection via
harvesting social media: A multimodal dictionary
learning solution. In IJCAI (pp. 3838-3844).
Stankevich, M., Isakov, V., Devyatkin, D., & Smirnov, I.
V. (2018, January). Feature engineering for depression
detection in social media. In ICPRAM (pp. 426-431).
Tejaswini, V., Sathya Babu, K., & Sahoo, B. (2024).
Depression detection from social media text analysis
using natural language processing techniques and
hybrid deep learning model. ACM Transactions on
Asian and Low-Resource Language Information
Processing, 23(1), 1-20.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017).
Attention is all you need. In Proceedings of the 31st
Conference on Neural Information Processing Systems
(NIPS) (pp. 5998-6008). Retrieved from
https://proceedings.neurips.cc/paper/2017/hash/3f5ee2
43547dee91fbd053c1c4a845aa-Abstract.html
WHO (2023). Depression. Retrieved April 10, 2025, from
https://www.who.int/health-topics/depression