future work, we will focus on enhancing the model’s 
consistency in classifying well-being comments by 
using larger datasets and addressing class imbalances. 
ACKNOWLEDGEMENTS 
This work was supported by the AÏDA – Artificial 
Intelligence for DiAbetes project, under the AL-
KHAWARIZMI programme. The authors gratefully 
acknowledge the financial and institutional support 
provided for the successful completion of this 
research. 
REFERENCES 
Bokolo, B. G., & Liu, Q. (2023). Deep learning-based 
depression detection from social media: Comparative 
evaluation of ml and transformer techniques. 
Electronics, 12(21), 4396. 
Chand, S. P., Arif, H., & Kutlenios, R. M. (2021). 
Depression (nursing). Retrieved from https://europe 
pmc.org/article/nbk/nbk568733 
Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., & Huang, M. 
(2023, June). Detecting Reddit users with depression 
using a hybrid neural network SBERT-CNN. In 2023 
IEEE 11th International Conference on Healthcare 
Informatics (ICHI) (pp. 193-199). IEEE. 
Coppersmith, G., Dredze, M., Harman, C., & Hollingshead, 
K. (2015). From ADHD to SAD: Analyzing the 
language of mental health on Twitter through self-
reported diagnoses. In Proceedings of the 2nd 
Workshop on Computational Linguistics and clinical 
psychology: from linguistic signal to clinical 
reality (pp. 1-10). 
Dawood Hristova, J. J., & Pérez-Jover, V. (2023). 
Psychotherapy with psilocybin for depression: 
systematic review. Behavioral Sciences, 13(4), 297. 
Devlin, J. (2018). Bert: Pre-training of deep bidirectional 
transformers for language understanding. arXiv 
preprint arXiv:1810.04805. 
Faizi R., El Fkihi S., El Afia A. & Chiheb R. (2017). 
Extracting Business Value from Big Data. In 
Proceedings of the 29th International Business 
Information Management Association Conference 
(IBIMA). ISBN: 978-0-9860419-7-6. 3-4 May 2017, 
Vienna, Austria 
Febriansyah, M. R., Yunanda, R., & Suhartono, D. (2023). 
Stress detection system for social media users. Procedia 
Computer Science, 216, 672-681. 
Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H., & 
Eichstaedt, J. C. (2017). Detecting depression and 
mental illness on social media: an integrative 
review. Current Opinion in Behavioral Sciences, 18, 
43-49. 
Hassan, N. M., Kassim, E. S., & Said, Y. M. U. (2021). 
Financial wellbeing and mental health: a systematic 
review. Studies of Applied Economics, 39(4). 
Lamichhane, B. (2023). Evaluation of ChatGPT for NLP-
based mental health applications. arXiv preprint 
arXiv:2303.15727. 
Marwaha, S., Palmer, E., Suppes, T., Cons, E., Young, A. 
H., & Upthegrove, R. (2023). Novel and emerging 
treatments for major depression. The Lancet, 
401(10371), 141-153. 
Nadeem, M. (2016). Identifying depression on Twitter. 
arXiv preprint arXiv:1607.07384. 
Naseem, U., Thapa, S., Zhang, Q., Rashid, J., Hu, L., & 
Nasim, M. (2023, November). Temporal tides of 
emotional resonance: A novel approach to identify 
mental health on social media. In Proceedings of the 
11th International Workshop on Natural Language 
Processing for Social Media (pp. 1-8). 
Rehmani, F., Shaheen, Q., Anwar, M., Faheem, M., & 
Bhatti, S. S. (2024). Depression detection with machine 
learning of structural and non-structural dual languages. 
Healthcare Technology Letters. 
Schulz, D. (2020). Depression development: From lifestyle 
changes to motivational deficits. Behavioural Brain 
Research, 395, 112845. 
Shen, G., Jia, J., Nie, L., Feng, F., Zhang, C., Hu, T., ... & 
Zhu, W. (2017, August). Depression detection via 
harvesting social media: A multimodal dictionary 
learning solution. In IJCAI (pp. 3838-3844). 
Stankevich, M., Isakov, V., Devyatkin, D., & Smirnov, I. 
V. (2018, January). Feature engineering for depression 
detection in social media. In ICPRAM (pp. 426-431). 
Tejaswini, V., Sathya Babu, K., & Sahoo, B. (2024). 
Depression detection from social media text analysis 
using natural language processing techniques and 
hybrid deep learning model. ACM Transactions on 
Asian and Low-Resource Language Information 
Processing, 23(1), 1-20. 
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). 
Attention is all you need. In Proceedings of the 31st 
Conference on Neural Information Processing Systems 
(NIPS) (pp. 5998-6008). Retrieved from 
https://proceedings.neurips.cc/paper/2017/hash/3f5ee2
43547dee91fbd053c1c4a845aa-Abstract.html 
WHO (2023). Depression. Retrieved April 10, 2025, from 
https://www.who.int/health-topics/depression