In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R.
Decker (Eds.), Data Analysis, Machine Learning and
Applications (pp. 319–326). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-540-78246-
9_38
Campbell, K., Gordon, L. A., Loeb, M. P., & Zhou, L.
(2003). The economic cost of publicly announced
information security breaches: Empirical evidence
from the stock market*. Journal of Computer Security,
11(3), 431–448. https://doi.org/10.3233/JCS-2003-
11308
Chalkidis, I., Fergadiotis, M., Kotitsas, S., Malakasiotis, P.,
Aletras, N., & Androutsopoulos, I. (2020). An
Empirical Study on Large-Scale Multi-Label Text
Classification Including Few and Zero-Shot Labels.
arXiv:2010.01653 [Cs].
http://arxiv.org/abs/2010.01653
Coronavirus-related fraud reports increase by 400% in
March | Action Fraud. (n.d.). Retrieved July 25, 2023,
from
https://www.actionfraud.police.uk/alert/coronavirus-
related-fraud-reports-increase-by-400-in-march
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.
arXiv:1810.04805 [Cs].
http://arxiv.org/abs/1810.04805
Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi,
H., & Smith, N. (2020). Fine-Tuning Pretrained
Language Models: Weight Initializations, Data Orders,
and Early Stopping. arXiv:2002.06305 [Cs].
http://arxiv.org/abs/2002.06305
Farooq, M., De Silva, V., Tibebu, H., & Shi, X. (2023).
Conversational Emotion Detection and Elicitation: A
Preliminary Study. 2023 IEEE IAS Global Conference
on Emerging Technologies (GlobConET), 1–5.
https://doi.org/10.1109/GlobConET56651.2023.10149
922
Freeze, D. (2020, November 10). Cybercrime To Cost The
World $10.5 Trillion Annually By 2025. Cybercrime
Magazine.
https://cybersecurityventures.com/cybercrime-
damage-costs-10-trillion-by-2025/
Furlanello, T., Lipton, Z. C., Tschannen, M., Itti, L., &
Anandkumar, A. (2018). Born Again Neural Networks.
arXiv:1805.04770 [Cs, Stat].
http://arxiv.org/abs/1805.04770
Guyon, I., & Elisseeff, A. (n.d.). An Introduction to
Variable and Feature Selection. 26.
Hasan, K., Shetty, S., & Ullah, S. (2019). Artificial
Intelligence Empowered Cyber Threat Detection and
Protection for Power Utilities. 2019 IEEE 5th
International Conference on Collaboration and
Internet Computing (CIC), 354–359.
https://doi.org/10.1109/CIC48465.2019.00049
Khan, M. S., Siddiqui, S., & Ferens, K. (2018). A Cognitive
and Concurrent Cyber Kill Chain Model. In K. Daimi
(Ed.), Computer and Network Security Essentials (pp.
585–602). Springer International Publishing.
https://doi.org/10.1007/978-3-319-58424-9_34
Lim, J., Lau, Y. L., Ming Chan, L. K., Tristan Paul Goo, J.
M., Zhang, H., Zhang, Z., & Guo, H. (2023). CVE
Records of Known Exploited Vulnerabilities. 2023 8th
International Conference on Computer and
Communication Systems (ICCCS), 738–743.
https://doi.org/10.1109/ICCCS57501.2023.10150856
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V.
(2019). RoBERTa: A Robustly Optimized BERT
Pretraining Approach (arXiv:1907.11692). arXiv.
http://arxiv.org/abs/1907.11692
Maaten Van Der, Laurens, Eric O, Postma, & H. Jaap van
den Herik. (2009). Dimensionality Reduction: A
Comparative Review. 10, 66–71.
NVD - Home. (n.d.). Retrieved July 25, 2023, from
https://nvd.nist.gov/
Samtani, S., Yang, S., & Chen, H. (2021). ACM KDD
AI4Cyber: The 1st Workshop on Artificial Intelligence-
enabled Cybersecurity Analytics. Proceedings of the
27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 4153–4154.
https://doi.org/10.1145/3447548.3469450
Sangaroonsilp, P., Dam, H. K., & Ghose, A. (2023). On
Privacy Weaknesses and Vulnerabilities in Software
Systems. 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 1071–
1083. https://doi.org/10.1109/ICSE48619.2023.00097
Seif, G. (2022, February 11). The 5 Clustering Algorithms
Data Scientists Need to Know. Medium.
https://towardsdatascience.com/the-5-clustering-
algorithms-data-scientists-need-to-know-a36d136ef68
Unit 42 Threat Intelligence and IoT Security Experts.
(2021, March). 2020 Unit 42 IoT Threat Report 2020
Unit 42 IoT Threat Report. Unit42.
https://unit42.paloaltonetworks.com/iot-threat-report-
2020/
Wang, T., Qin, S., & Chow, K. P. (2021). Towards
Vulnerability Types Classification Using Pure Self-
Attention: A Common Weakness Enumeration Based
Approach. 2021 IEEE 24th International Conference
on Computational Science and Engineering (CSE),
146–153.
https://doi.org/10.1109/CSE53436.2021.00030