In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R. 
Decker (Eds.),  Data Analysis, Machine Learning and 
Applications  (pp.  319–326).  Springer  Berlin 
Heidelberg.  https://doi.org/10.1007/978-3-540-78246-
9_38 
Campbell,  K.,  Gordon,  L.  A.,  Loeb,  M.  P.,  &  Zhou,  L. 
(2003).  The  economic  cost  of  publicly  announced 
information  security  breaches:  Empirical  evidence 
from the stock market*. Journal of Computer Security, 
11(3),  431–448.  https://doi.org/10.3233/JCS-2003-
11308 
Chalkidis, I., Fergadiotis, M., Kotitsas, S., Malakasiotis, P., 
Aletras,  N.,  &  Androutsopoulos,  I.  (2020).  An 
Empirical  Study  on  Large-Scale  Multi-Label  Text 
Classification  Including  Few  and  Zero-Shot  Labels. 
arXiv:2010.01653 [Cs]. 
http://arxiv.org/abs/2010.01653 
Coronavirus-related fraud reports increase by 400% in 
March | Action Fraud. (n.d.). Retrieved July 25, 2023, 
from 
https://www.actionfraud.police.uk/alert/coronavirus-
related-fraud-reports-increase-by-400-in-march 
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). 
BERT:  Pre-training  of  Deep  Bidirectional 
Transformers  for  Language  Understanding. 
arXiv:1810.04805 [Cs]. 
http://arxiv.org/abs/1810.04805 
Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi, 
H.,  &  Smith,  N.  (2020).  Fine-Tuning  Pretrained 
Language Models: Weight Initializations, Data Orders, 
and  Early  Stopping.  arXiv:2002.06305 [Cs]. 
http://arxiv.org/abs/2002.06305 
Farooq,  M.,  De  Silva,  V.,  Tibebu,  H.,  &  Shi,  X.  (2023). 
Conversational  Emotion  Detection  and  Elicitation:  A 
Preliminary Study. 2023 IEEE IAS Global Conference 
on Emerging Technologies (GlobConET),  1–5. 
https://doi.org/10.1109/GlobConET56651.2023.10149
922 
Freeze, D. (2020, November 10). Cybercrime To Cost The 
World  $10.5  Trillion Annually  By  2025. Cybercrime 
Magazine. 
https://cybersecurityventures.com/cybercrime-
damage-costs-10-trillion-by-2025/ 
Furlanello, T., Lipton, Z. C., Tschannen, M., Itti, L., & 
Anandkumar, A. (2018). Born Again Neural Networks. 
arXiv:1805.04770 [Cs, Stat]. 
http://arxiv.org/abs/1805.04770 
Guyon,  I.,  &  Elisseeff,  A.  (n.d.).  An Introduction to 
Variable and Feature Selection. 26. 
Hasan,  K.,  Shetty,  S.,  &  Ullah,  S.  (2019).  Artificial 
Intelligence  Empowered  Cyber  Threat  Detection  and 
Protection  for  Power  Utilities.  2019 IEEE 5th 
International Conference on Collaboration and 
Internet Computing (CIC),  354–359. 
https://doi.org/10.1109/CIC48465.2019.00049 
Khan, M. S., Siddiqui, S., & Ferens, K. (2018). A Cognitive 
and Concurrent Cyber Kill Chain Model. In K. Daimi 
(Ed.), Computer and Network Security Essentials (pp. 
585–602).  Springer  International  Publishing. 
https://doi.org/10.1007/978-3-319-58424-9_34 
Lim, J., Lau, Y. L., Ming Chan, L. K., Tristan Paul Goo, J. 
M.,  Zhang,  H.,  Zhang,  Z.,  &  Guo,  H.  (2023).  CVE 
Records of Known Exploited Vulnerabilities. 2023 8th 
International Conference on Computer and 
Communication Systems (ICCCS),  738–743. 
https://doi.org/10.1109/ICCCS57501.2023.10150856 
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., 
Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. 
(2019).  RoBERTa: A Robustly Optimized BERT 
Pretraining Approach  (arXiv:1907.11692).  arXiv. 
http://arxiv.org/abs/1907.11692 
Maaten Van Der, Laurens, Eric O, Postma, & H. Jaap van 
den  Herik.  (2009).  Dimensionality Reduction: A 
Comparative Review. 10, 66–71. 
NVD - Home.  (n.d.).  Retrieved  July  25,  2023,  from 
https://nvd.nist.gov/ 
Samtani,  S.,  Yang,  S.,  &  Chen,  H.  (2021).  ACM  KDD 
AI4Cyber: The 1st Workshop on Artificial Intelligence-
enabled  Cybersecurity  Analytics.  Proceedings of the 
27th ACM SIGKDD Conference on Knowledge 
Discovery & Data Mining,  4153–4154. 
https://doi.org/10.1145/3447548.3469450 
Sangaroonsilp,  P.,  Dam,  H.  K.,  &  Ghose,  A.  (2023).  On 
Privacy  Weaknesses  and  Vulnerabilities  in  Software 
Systems.  2023 IEEE/ACM 45th International 
Conference on Software Engineering (ICSE),  1071–
1083. https://doi.org/10.1109/ICSE48619.2023.00097 
Seif, G. (2022, February 11). The 5 Clustering Algorithms 
Data Scientists Need to Know.  Medium. 
https://towardsdatascience.com/the-5-clustering-
algorithms-data-scientists-need-to-know-a36d136ef68 
Unit  42  Threat  Intelligence  and  IoT  Security  Experts. 
(2021, March). 2020 Unit 42 IoT Threat Report 2020 
Unit  42  IoT  Threat  Report.  Unit42. 
https://unit42.paloaltonetworks.com/iot-threat-report-
2020/ 
Wang,  T.,  Qin,  S.,  &  Chow,  K.  P.  (2021).  Towards 
Vulnerability  Types  Classification  Using  Pure  Self-
Attention: A  Common  Weakness Enumeration Based 
Approach.  2021 IEEE 24th International Conference 
on Computational Science and Engineering (CSE), 
146–153. 
https://doi.org/10.1109/CSE53436.2021.00030