
cations in cultural heritage preservation: Tech-
nological advancements for the conservation.
In Proceedings of the International Confer-
ence on Multidisciplinary Studies, pages 94–
101. Baskent University, 2022.
Beijing Union University Authors affiliated with the
College of Arts, UNESCO World Heritage In-
stitute of Training, Research-Asia, and Pacific
(Shanghai). A hybrid deep learning approach for
multi-classification of heritage monuments using
a real-phase image dataset. In Proceedings of the
International Conference on Intelligent Comput-
ing and Research in Cyber Security (ICIRCA),
pages 1105–1117. IEEE, 2023.
Mahdi Bahrami and Amir Albadvi. Deep learning for
identifying iran’s cultural heritage buildings in
need of conservation using image classification
and grad-cam. arXiv preprint arXiv:2302.14354,
2023.
Z. B. Franco, J. S. Liao, and S. C. Lee. Heritage
site preservation using machine learning and ai-
based defect detection methods. Heritage Sci-
ence and Technology, 16:34–42, Oct 2021.
Kholoud Ghaith. Ai integration in cultural her-
itage conservation (ethical considerations and
the human imperative). International Journal of
Emerging Digital Intelligence and Engineering,
1(1):1–10, 2023.
Fern
´
andez-Mart
´
ınez J. L. Gonz
´
alez-P
´
erez, M. A. and
J. A. Garc
´
ıa-Garc
´
ıa. Technologies for the preser-
vation of cultural heritage—a systematic review
of the literature. Journal of Architectural Con-
servation, 25(1):1–18, 2023.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages
770–778, 2016. doi: 10.1109/CVPR.2016.90.
Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Va-
sudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 1314–1324,
2019.
L. S. Kalugina, M. D. Marchenko, and M. R. Palmer.
Ai-powered solutions in heritage conservation.
Cultural Preservation Review, 18:77–86, Apr
2022.
L. C. Lee, M. S. Alvarez, and F. Z. He. Defect de-
tection in historical buildings through ai-based
frameworks. Computational Vision for Preser-
vation, 7(4):59–67, Nov 2023.
Y. C. Li, M. D. Lin, and H. Zhang. Deep learn-
ing frameworks for heritage site preservation and
analysis. Heritage Science Journal, 21:32–40,
Dec 2023.
M. Lopez, L.H. Bianchi, and K.S. Xu. Classifica-
tion of architectural heritage images using deep
learning. Electronics, 7(10):992, 2017.
J. A. Martinez, H. T. Li, and G. C. Greene. Cul-
tural heritage conservation with deep neural net-
works: A systematic survey. Heritage Science
Advances, 14:1–10, Oct 2023.
Fabrice Monna et al. Deep learning to detect built
cultural heritage from satellite imagery. Journal
of Cultural Heritage, 49:177–183, 2021.
H. P
´
erez, J.H.M. Tah, and A. Mosavi. Deep learn-
ing for detecting building defects using convo-
lutional neural networks. Sensors, 19(16):3556,
2019.
Mark Sandler, Andrew Howard, and Grace Chu. Mo-
bilenetv3: Efficient convolutional networks for
mobile vision applications. In Proceedings of the
IEEE International Conference on Computer Vi-
sion (ICCV), pages 5251–5260. IEEE, 2019.
S. K. Soni, P. G. Howard, and E. Chansker. Leverag-
ing grad-cam and mobilenet for cultural heritage
conservation. Journal of Deep Learning Appli-
cations, 18(1):45–56, Jul 2023.
P. B. Tsiaras, D. G. Yu, and X. Zhou. Machine learn-
ing for cultural heritage preservation: The im-
pact of deep learning. Heritage Conservation
Journal, 6:82–91, May 2024.
T. T. Wei, L. J. Kim, and A. Y. Hu. Heritage
preservation through deep learning: A case study
with cnns. Journal of Heritage Technology and
Preservation, 10:112–118, Aug 2021.
M. R. Williams, P. C. Martinez, and K. K. Sander-
son. Deploying ai for cultural heritage conserva-
tion. Journal of Modern Cultural Preservation,
17:13–21, Jan 2023.
D. G. Xu, K. N. Ruo, and L. X. Zhen. Cultural her-
itage site defect detection using cnns and deep
learning models. In Proceedings of the AI Her-
itage Preservation Conference, pages 142–156,
2022.
INCOFT 2025 - International Conference on Futuristic Technology
626