4 CONCLUSIONS
We proposed a hybrid framework combining CNNs
and GNNs for glaucoma detection from retinal
fundus photographs. The ensemble technique, which
used CNNs for characteristic extraction and GNNs
for modeling relational information among features,
outperformed CNN-handiest fashions. In specific, the
ensemble received a precision of zero.79, a consider
of 0.76, and an F1 score of 0.77 on the ORIGA
dataset, surpassing contemporary methods. This
research opens up the opportunity of graph-based
totally techniques in medical image analysis with the
ability for massive improvement in glaucoma
detection. Future paintings may be in increasing this
method to different medical conditions and imaging
duties by exploring other graph structures.
ACKNOWLEDGEMENTS
The author extends sincere thanks to the mentor for
their valuable contributions in discussing the results
and providing feedback.
REFERENCES
Kipf, T. N., & Welling, M. (2017). Semi-Supervised
Classification with Graph Convolutional Networks. In
International Conference on Learning Representations
(ICLR). Retrieved from
https://arxiv.org/abs/1609.02907
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual
Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 770-778).
Wang, L., Li, Z., & Zhang, X. (2021). A Deep Learning-
Based Framework for Glaucoma Detection Using
Retinal Fundus Images. IEEE Transactions on Medical
Imaging, 40(6), 1541-1552.
https://doi.org/10.1109/TMI.2021.3053295
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S.
Y. (2020). A Comprehensive Survey on Graph Neural
Networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1), 4-24.
https://doi.org/10.1109/TNNLS.2020.297838
Zhang, X., Ning, L., Yang, J., Chen, W., & Li, H. (2020).
Graph-Based Medical Diagnosis Using GCN:
Application in Glaucoma Detection. In Proceedings of
the AAAI Conference on Artificial Intelligence (Vol.
34, No. 07, pp. 7952-7960).
https://doi.org/10.1609/aaai.v34i07.6846
Kingma, D. P., & Ba, J. (2014). Adam: A Method for
Stochastic Optimization. In Proceedings of the
International Conference on Learning Representations
(ICLR). Retrieved from
https://arxiv.org/abs/1412.6980
Fauw, J. D., Ledsam, J. R., Romera-Paredes, B., Nikolov,
S., Tomasev, N., Blackwell, S., ... & Mohamed, S.
(2018). Clinically Applicable Deep Learning for
Diagnosis and Referral in Retinal Disease. Nature
Medicine, 24(9), 1342-1350.
https://doi.org/10.1038/s41591-018-0107-6
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., ... & Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing
Systems (pp. 8024-8035).
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P.,
Danesh, J., ... & Collins, R. (2015). UK Biobank: An
Open Access Resource for Identifying the Causes of a
Wide Range of Complex Diseases of Middle and Old
Age. PLOS Medicine, 12(3), e1001779.
https://doi.org/10.1371/journal.pmed.1001779
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei,
L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 248-255)
Zhou, C., Li, H., Hao, X., & Xu, X. (2020). Graph
Convolutional Network-Based Glaucoma Detection
With Multi-View Features. IEEE Access, 8, 92390-
92398. ttps://doi.org/10.1109/ACCESS.2020.2994419
Xu, M., & Cheng, F. (2021). Medical Image Analysis by
Convolutional Neural Networks with Dynamic Graphs.
IEEE Journal of Biomedical and Health Informatics,
25(2), 501-509.
https://doi.org/10.1109/JBHI.2020.2988444
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., & Batra, D. (2020). Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based
Localization. International Journal of Computer Vision,
128(2), 336-359. https://doi.org/10.1007/s11263-019-
01228-7
Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J.,
Bruynseels, A., ... & Topol, E. J. (2019). A Comparison
of Deep Learning Performance Against Health-Care
Professionals in Detecting Diseases From Medical
Imaging: A Systematic Review and Meta-Analysis.
The Lancet Digital Health, 1(6), e271-e297.
https://doi.org/10.1016/S2589-7500(19)30123-2
Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
& Leskovec, J. (2020). Open Graph Benchmark:
Datasets for Machine Learning on Graphs. In Advances
in Neural Information Processing Systems (Vol. 33, pp.
22118-22133).
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image
Segmentation. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI) (pp. 234-
241). https://doi.org/10.1007/978-3-319-24574-4_28
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks. In
Proceedings of the 36th International Conference on