
Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C., and
Elmaghraby, A. (2020). Ensemble deep learning mod-
els for heart disease classification: A case study from
mexico. Information, 11(4):207.
Bockelmann, C., Pratas, N. K., Wunder, G., Saur, S.,
Navarro, M., Gregoratti, D., Vivier, G., De Carvalho,
E., Ji, Y., Stefanovi
´
c,
ˇ
C., et al. (2018). Towards mas-
sive connectivity support for scalable mmtc communi-
cations in 5g networks. IEEE access, 6:28969–28992.
Chen, M., Challita, U., Saad, W., Yin, C., and Debbah,
M. (2019). Artificial neural networks-based machine
learning for wireless networks: A tutorial. IEEE Com-
munications Surveys & Tutorials, 21(4):3039–3071.
Choi, J. Y. and Lee, B. (2018). Combining lstm network en-
semble via adaptive weighting for improved time se-
ries forecasting. Mathematical problems in engineer-
ing, 2018(1):2470171.
Firouzi, R. and Rahmani, R. (2024). Delay-sensitive re-
source allocation for iot systems in 5g o-ran networks.
Internet of Things, 26:101131.
Foukas, X., Patounas, G., Elmokashfi, A., and Marina,
M. K. (2017). Network slicing in 5g: Survey and chal-
lenges. IEEE communications magazine, 55(5):94–
100.
Hu, B., Zhang, W., Gao, Y., Du, J., and Chu, X. (2024).
Multi-agent deep deterministic policy gradient-based
computation offloading and resource allocation for
isac-aided 6g v2x networks. IEEE Internet of Things
Journal.
Imianvan, A. A. and Robinson, S. A. (2024). Enhancing
5g internet of things (iot) connectivity through com-
prehensive path loss modelling: A systematic review.
LAUTECH JOURNAL OF COMPUTING AND IN-
FORMATICS, 4(2):31–48.
Li, Y., Cheng, X., Cao, Y., Wang, D., and Yang, L. (2017).
Smart choice for the smart grid: Narrowband internet
of things (nb-iot). IEEE Internet of Things Journal,
5(3):1505–1515.
Logeshwaran, J., Kiruthiga, T., and Lloret, J. (2023a). A
novel architecture of intelligent decision model for ef-
ficient resource allocation in 5g broadband communi-
cation networks. ICTACT Journal On Soft Computing,
13(3).
Logeshwaran, J., Shanmugasundaram, N., and Lloret, J.
(2023b). Energy-efficient resource allocation model
for device-to-device communication in 5g wireless
personal area networks. International Journal of
Communication Systems, 36(13):e5524.
Lueth, K. L. (2020). State of the iot 2020: 12 billion iot
connections, surpassing non-iot for the first time. IoT
Analytics, 19(11).
Monem, M. A. (October 9, 2021). What is the importance
of network slicing? Network-Slicing-Diagram.
Najm, I. A., Hamoud, A. K., Lloret, J., and Bosch, I. (2019).
Machine learning prediction approach to enhance con-
gestion control in 5g iot environment. Electronics,
8(6):607.
Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A.,
Li, J., and Poor, H. V. (2021). Federated learning for
internet of things: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 23(3):1622–
1658.
Omar Sobhy, Ahmed Mousa, S. H. K. (2023). 5g resource
allocation dataset:optimizing band. Kaggle.
Pons, M., Valenzuela, E., Rodr
´
ıguez, B., Nolazco-Flores,
J. A., and Del-Valle-Soto, C. (2023). Utilization of
5g technologies in iot applications: Current limita-
tions by interference and network optimization diffi-
culties—a review. Sensors, 23(8):3876.
Rehman, W. U., Salam, T., Almogren, A., Haseeb, K., Din,
I. U., and Bouk, S. H. (2020). Improved resource al-
location in 5g mtc networks. Ieee Access, 8:49187–
49197.
(@rvwomersley), R. W. (2018). 5g triangle, enhanced ad-
vanced features. X.com post.
Shi, Y., Sagduyu, Y. E., and Erpek, T. (2020a). Reinforce-
ment learning for dynamic resource optimization in
5g radio access network slicing. In 2020 IEEE 25th
international workshop on computer aided modeling
and design of communication links and networks (CA-
MAD), pages 1–6. IEEE.
Shi, Y., Sagduyu, Y. E., and Erpek, T. (2020b). Reinforce-
ment learning for dynamic resource optimization in
5g radio access network slicing. In 2020 IEEE 25th
international workshop on computer aided modeling
and design of communication links and networks (CA-
MAD), pages 1–6. IEEE.
Tayyaba, S. K. and Shah, M. A. (2019). Resource alloca-
tion in sdn based 5g cellular networks. Peer-to-Peer
Networking and Applications, 12(2):514–538.
Yin, Z., Lin, Y., Zhang, Y., Qian, Y., Shu, F., and Li, J.
(2022). Collaborative multiagent reinforcement learn-
ing aided resource allocation for uav anti-jamming
communication. IEEE Internet of Things Journal,
9(23):23995–24008.
Zheng, G., Zhu, E., Zhang, H., Liu, Y., and Wang, C.
(2023). Research on throughput maximization of mass
device access based on 5g big connection. In Proceed-
ings of the 2023 International Conference on Commu-
nication Network and Machine Learning, pages 93–
96.
INCOFT 2025 - International Conference on Futuristic Technology
580