Systems and Applications Engineering, 11(2), 192–
200. https://doi.org/10.46328/ijisae.4781
Tigade, A. V., & Shaikh, S. M. (2021). A hybrid approach
for classification of bone fracture using DWT, GLCM,
and KNN. Journal of Computational and Theoretical
Nanoscience, 18(4), 1419–1425.
https://www.naturalspublishing.com/files/published/1r
886bfj97787b.pdf
Shelmerdine, S., White, R., Liu, H., Arthurs, O., & Sebire,
N. (2022). Artificial intelligence for radiological
paediatric fracture assessment: A systematic review.
Insights into Imaging, 13, 10.
https://doi.org/10.1186/s13244-022-01234-3
Yang, S., Yin, B., Cao, W., Feng, C., Fan, G., & He, S.
(2020). Diagnostic accuracy of deep learning in
orthopaedic fractures: A systematic review and meta-
analysis. Clinical Radiology, 75, 1–10.
https://doi.org/10.1016/j.crad.2020.05.021
Zou, J., & Arshad, M. R. (2024). Detection of whole body
bone fractures based on improved YOLOv7.
Biomedical Signal Processing and Control, 91,
105995. https://doi.org/10.1016/j.bspc.2024.105995
Puttagunta, M., & Ravi, S. (2021). Medical image analysis
based on deep learning approach. Multimedia Tools
and Applications, 80, 24365–24398.
https://doi.org/10.1007/s11042-021-10707-4
Zhang, H., & Qie, Y. (2023). Applying deep learning to
medical imaging: A review. Applied Sciences, 13,
10521. https://doi.org/10.3390/app131810521
Tanzi, L., Vezzetti, E., Aprato, A., Audisio, A., & Massè,
A. (2020). Computer-aided diagnosis system for bone
fracture detection and classification: A review on deep
learning techniques.
Moon, G., Kim, S., Kim, W., Jeong, Y., & Choi, H.-S.
(2022). Computer-aided facial bone fracture diagnosis
(CA-FBFD) system based on object detection model.
IEEE Access, 10, 79061–79070.
https://doi.org/10.1109/ACCESS.2022.3192389
Tan, H., Xu, H., Yu, N., Yu, Y., Duan, H., Fan, Q., & Z.
T. (2023). The value of deep learning-based computer
aided diagnostic system in improving diagnostic
performance of rib fractures in acute blunt trauma.
BMC Medical Imaging, 23(1), 55.
https://doi.org/10.1186/s12880-023-01012-7
Martin, L. T., Nelson, C., Yeung, D., Acosta, J. D.,
Qureshi, N., Blagg, T., & Chandra, A. (2022). The
issues of interoperability and data connectedness for
public health. Big Data, 10(S1), S19-S24.
https://doi.org/10.1089/big.2022.0207
Dash, S., Shakyawar, S. K., Sharma, M., et al. (2019). Big
data in healthcare: Management, analysis, and future
prospects. Journal of Big Data, 6, 54.
https://doi.org/10.1186/s40537-019-0217-0
Aiello, M., Esposito, G., Pagliari, G., et al. (2021). How
does DICOM support big data management?
Investigating its use in the medical imaging
community. Insights into Imaging, 12, 164.
https://doi.org/10.1186/s13244-021-01081-8
Sun, Y., Li, Y., Li, S., Duan, Z., Ning, H., & Zhang, Y.
(2023). PBA-YOLOv7: An object detection method
based on an improved YOLOv7 network. Applied
Sciences, 13, 10436.
https://doi.org/10.3390/app131810436
Zha, K. Y., Yan, L., & Zeng, G. (2022). A comprehensive
review of AI techniques for bone fracture detection.
arXiv preprint. https://arxiv.org/abs/2207.02696
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023).
YOLOv7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 7464-7475).
https://doi.org/10.1109/CVPR52729.2023.00721
Medaramatla, S., Samhitha, C., Pande, S., & Vinta, S.
(2024). Detection of hand bone fractures in X-ray
images using hybrid YOLO NAS. IEEE Access, 1.
https://doi.org/10.1109/ACCESS.2024.3379760
Kheaksong, A., Sanguansat, P., Samothai, P., Dindam, T.,
Srisomboon, K., & Lee, W. (2022). Analysis of
modern image classification platforms for bone
fracture detection. In Proceedings of the 6th
International Conference on Information Technology
(InCIT) (pp. 471-474).
https://doi.org/10.1109/InCIT56086.2022.10067836
Yigzaw, K. Y., Olabarriaga, S., Michalas, A., Marco-Ruiz,
L., Hillen, C., Verginadis, Y., Oliveira, M. T.,
Krefting, D., Penzel, T., Bowden, J., Bellika, J., &
Chomutare, T. (2022). Health data security and
privacy: Challenges and solutions for the future.
Computer Systems Science and Engineering.
https://doi.org/10.1016/B978-0-12-823413-6.00014-8
Kumar, K. P., Prathap, B. R., Thiruthuvanathan, M. M.,
Murthy, H., & Pillai, V. J. (2024). Secure approach to
sharing digitized medical data in a cloud environment.
Data Science and Management, 7(2), 108-118.
https://doi.org/10.1016/j.dsm.2023.12.001
Zukarnain, Z., Muneer, A., Atirah, N., & Almohammedi,
A. (2022). Medi-Block record secure data sharing in
healthcare system: Issues, solutions, and challenges.
Computer Systems Science and Engineering.
https://doi.org/10.32604/csse.2023.034448
Guo, H., Wang, Y., Ding, H., & Chen, J. (2023). Bone
fracture detection based on an improved YOLOv7
model. IEEE Access, 11, 7635-7645.
https://doi.org/10.1109/ACCESS.2023.10476607
Parvin, S., & Rahman, A. (2024). A real-time human bone
fracture detection and classification from multi-modal
images using deep learning technique. Applied
Intelligence, 54, 1-17. https://doi.org/10.1007/s10489-
024-05588-7
Gupta, A. (2024). A comprehensive guide on optimizers in
deep learning. Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2021/10/a-
comprehensive-guide-on-deep-learning-optimizers/
Kingma, D., & Ba, J. (2015). Adam: A method for
stochastic optimization. In Proceedings of the
International Conference on Learning Representations
(ICLR). https://doi.org/10.48550/arXiv.1412.6980
Ruder, S. (2016). An overview of gradient descent
optimization algorithms.
https://doi.org/10.48550/arXiv.1609.04747