
Kalajdjieski, J., Toshevska, M., and Stojanovska, F. (2020).
Recent advances in sql query generation: A survey.
arXiv preprint arXiv:2005.07667.
KANBURO
˘
GLU, A. B. and TEK, F. B. (2024). Text-to-sql:
A methodical review of challenges and models. Turk-
ish Journal of Electrical Engineering and Computer
Sciences, 32(3):403–419.
Kedwan, F. (2023). NLP Application: Natural Language
Questions and SQL Using Computational Linguistics.
CRC Press.
Khalo, N. (2021). Querying relational database systems in
natural language using sequence to sequence learning
with neural networks. PhD thesis.
Kumar, A., Nagarkar, P., Nalhe, P., and Vijayakumar, S.
(2022a). Deep learning driven natural languages text
to sql query conversion: a survey. arXiv preprint
arXiv:2208.04415.
Kumar, A., Nagarkar, P., Nalhe, P., and Vijayakumar, S.
(2022b). Deep learning driven natural languages text
to sql query conversion: a survey. arXiv preprint
arXiv:2208.04415.
Nihalani, N., Silakari, S., and Motwani, M. (2011). Natural
language interface for database: a brief review. Inter-
national Journal of Computer Science Issues (IJCSI),
8(2):600.
Pan, Y., Wang, C., Hu, B., Xiang, Y., Wang, X., Chen, Q.,
Chen, J., Du, J., et al. (2021). A bert-based generation
model to transform medical texts to sql queries for
electronic medical records: model development and
validation. JMIR Medical Informatics, 9(12):e32698.
Patwardhan, N., Marrone, S., and Sansone, C. (2023).
Transformers in the real world: A survey on nlp ap-
plications. Information, 14(4):242.
Pigott-Dix, L. A. K. (2023). Automating the Annotation of
Data through Machine Learning and Semantic Tech-
nologies. PhD thesis, University of East Anglia.
Raiaan, M. A. K., Mukta, M. S. H., Fatema, K., Fahad,
N. M., Sakib, S., Mim, M. M. J., Ahmad, J., Ali,
M. E., and Azam, S. (2024). A review on large
language models: Architectures, applications, tax-
onomies, open issues and challenges. IEEE Access.
Tao, L., Xie, Z., Xu, D., Ma, K., Qiu, Q., Pan, S., and
Huang, B. (2022). Geographic named entity recog-
nition by employing natural language processing and
an improved bert model. ISPRS International Journal
of Geo-Information, 11(12):598.
Wang, Y. and Hajli, N. (2017). Exploring the path to big
data analytics success in healthcare. Journal of Busi-
ness Research, 70:287–299.
Zhang, W., Wang, Y., Song, Y., Wei, V. J., Tian, Y., Qi, Y.,
Chan, J. H., Wong, R. C.-W., and Yang, H. (2024).
Natural language interfaces for tabular data querying
and visualization: A survey. IEEE Transactions on
Knowledge and Data Engineering.
Zhong, V., Xiong, C., and Socher, R. (2017). Seq2sql:
Generating structured queries from natural lan-
guage using reinforcement learning. arXiv preprint
arXiv:1709.00103.
Zhu, X., Li, Q., Cui, L., and Liu, Y. (2024a). Large lan-
guage model enhanced text-to-sql generation: A sur-
vey. arXiv preprint arXiv:2410.06011.
Zhu, X., Li, Q., Cui, L., and Liu, Y. (2024b). Large lan-
guage model enhanced text-to-sql generation: A sur-
vey. arXiv preprint arXiv:2410.06011.
Zhu, X., Li, Q., Cui, L., and Liu, Y. (2024c). Large lan-
guage model enhanced text-to-sql generation: A sur-
vey. arXiv preprint arXiv:2410.06011.
Zhu, X., Li, Q., Cui, L., and Liu, Y. (2024d). Large lan-
guage model enhanced text-to-sql generation: A sur-
vey. arXiv preprint arXiv:2410.06011.
Zhu, X., Li, Q., Cui, L., and Liu, Y. (2024e). Large lan-
guage model enhanced text-to-sql generation: A sur-
vey. arXiv preprint arXiv:2410.06011.
Text to SQL Generation Using Beam Search and an Enhanced Bert Model
55