
devices essential in SAR operations. Through careful
optimization and the use of ensemble methods like
Non-Maximum Suppression (NMS) and confidence-
weighted voting, the project achieved a robust solu-
tion that meets the real-time requirements and vari-
able conditions of SAR missions.
Overall, this project provides a comprehensive
and scalable human detection system that addresses
the critical demands of SAR operations. By combin-
ing advanced deep learning architectures, image en-
hancement techniques, and real-time alerting mecha-
nisms, the system effectively improves SAR capabil-
ities, ensuring faster and more accurate detection in
scenarios where time is of the essence. Future en-
hancements, such as sound detection and video pro-
cessing, can further extend the system’s effectiveness,
making it an invaluable tool in life-saving SAR ef-
forts.
REFERENCES
Zailan, Nor Wahidah, Alsagoff, Syed Nasir, Yusoff, Za-
harin, and Marzuki, Syahaneim (2022). Determining
an Appropriate Search Grid Pattern for SAR in Forest
Areas. IEEE Xplore.
Mesvan, Nikite (2021). CNN-based Human Detection for
UAVs in Search and Rescue. arXiv.
Wijesundara, Dinuka, Gunawardena, Lasith, and
Premachandra, Chinthaka (2022). Human Recogni-
tion from High-altitude UAV Images by AI-based
Body Region Detection. IEEE Xplore.
Enoch, Jiya Adama, Oluwafemi, Ilesanmi B., Paul, Olu-
lope K., Ibikunle, Francis A., Emmanuel, Osaji, and
Olamide, Ariba Folashade (2023). A Comparative
Performance Study of SVM, KNN, and Ensemble
Classifiers for Through-wall Human Detection. IEEE
Xplore.
Kulhandjian, Hovannes, Davis, Alexander, Leong,
Lancelot, Bendot, Michael, and Kulhandjian, Michel
(2023). AI-based Human Detection in Heavy Smoke
Using Radar and IR Camera. IEEE Xplore.
Moury, Khadiza Sarwar, Gauhar, Noushin, and Ahsan, Sk.
Md. Masudul (2023). A Rotation and Scale Invari-
ant CNN Model for Disaster Area Detection. IEEE
Xplore.
Llanes, Louis Antonio C., Ulbis, Christian Rhod H., and
Garcia, Ramon G. (2023). Remote-Controlled Water
Vehicle for Flood SAR Using YOLOv4. IEEE Xplore.
Gaur, Samta, and Kumar, J. Sathish (2023). UAV-based Hu-
man Detection in Flood SAR Using YOLOv4. IEEE
Xplore.
Paglinawan, Charmaine C., Lagman, Jewel Kate D., and
Evangelista, Alden B. (2024). YOLOv5-based Human
Detection and Counting in UAV SAR. IEEE Xplore.
Zou, Xiongxin, Peng, Tangle, and Zhou, Yimin (2024).
Visible-Thermal Fused YOLOv5 Network for SAR.
IEEE Xplore.
Chavez, Tricczia Karlisle, and Dela Cruz, Jennifer (2024).
Multi-task Learning for Flood SAR Using YOLOv7
and MobileNetV2. IEEE Xplore.
Sruthy, K.G., Hanan, M., Rinsy, Sulthana A.P., Dev, Gokul,
Muhammed, Fairooz, and Anand, Jithamanue (2024).
Ocean Wings - Human Detection in Open Water Us-
ing Drones and YOLOv8. IEEE Xplore.
Jyotsna, P., Surendar, Sanjay B., Sharan, B., Dhanaselvam,
J., and Rajesh, R. (2024). Thermal Vision RC Tank for
Human Detection in Disaster Areas. IEEE Xplore.
Premachandra, Chinthaka, and Kunisada, Yugo (2024).
GAN-Based Audio Noise Suppression for UAV SAR.
IEEE Xplore.
Sughasini, K.R., Premitha, P.S., Kunanidhi, Charlas G.,
Sreelaxmi, R., and Kushal, A.S. (2024). Underwater
SAR Using Drone. IEEE Xplore.
Liu, Xu, Zhu, Hanhao, Song, Weihua, Wang, Jiahui, Yan,
Lengleng, and Wang, Kelin (2024). Improved VGG-
16 Model for Acoustic Image Recognition in SAR.
IEEE Xplore.
Aji, Andi Alfian Kartika, Sebastian, Matthew, Alexan-
der, Francis, Tsai, Po-Ting, and Lee, Min-Fan Ricky
(2024). Neural Network-Assisted Observer for ASV
Tracking. IEEE Xplore.
Soorki, Mehdi Naderi, Aghajari, Hossein, Ahmadin-
abi, Sajad, Babadegani, Hamed Bakhtiari, Chaccour,
Christina, and Saad, Walid (2024). LoRa-based SAR
Using Meta-RL for UAVs. IEEE Xplore.
Kozlov, Mykyta S., and Malakhov, Eugene V. (2024). Com-
plex Multi-level Drone System for Human Recogni-
tion in SAR. IEEE Xplore.
Dousai, Nayee Muddin Khan, and Loncaric, Sven (2022).
Detecting Humans in SAR Based on Ensemble Learn-
ing. IEEE Xplore.
INCOFT 2025 - International Conference on Futuristic Technology
928