
approach using uav and yolov3. In 2019 1st Interna-
tional conference on industrial artificial intelligence
(IAI), pages 1–5. IEEE.
Kim, S.-Y. and Muminov, A. (2023). Forest fire smoke
detection based on deep learning approaches and un-
manned aerial vehicle images. Sensors, 23(12):5702.
Li, Y., Shen, Z., Li, J., and Xu, Z. (2022). A deep learn-
ing method based on srn-yolo for forest fire detection.
In 2022 5th International Symposium on Autonomous
Systems (ISAS), pages 1–6.
Mohnish, S., Akshay, K., Pavithra, P., Ezhilarasi, S., et al.
(2022). Deep learning based forest fire detection and
alert system. In 2022 International Conference on
Communication, Computing and Internet of Things
(IC3IoT), pages 1–5. IEEE.
Prakash, M., Neelakandan, S., Tamilselvi, M., Velmu-
rugan, S., Baghavathi Priya, S., and Ofori Martin-
son, E. (2023). Deep learning-based wildfire image
detection and classification systems for controlling
biomass. International Journal of Intelligent Systems,
2023(1):7939516.
Shroff, P. (2023). Ai-based wildfire prevention, de-
tection and suppression system. arXiv preprint
arXiv:2312.06990.
Talaat, F. M. and ZainEldin, H. (2023). An improved fire
detection approach based on yolo-v8 for smart cities.
Neural Computing and Applications, 35(28):20939–
20954.
Vasconcelos, R. N., Franca Rocha, W. J., Costa, D. P.,
Duverger, S. G., Santana, M. M. d., Cambui, E. C.,
Ferreira-Ferreira, J., Oliveira, M., Barbosa, L. d. S.,
and Cordeiro, C. L. (2024). Fire detection with
deep learning: A comprehensive review. Land,
13(10):1696.
Wang, S., Chen, T., Lv, X., Zhao, J., Zou, X., Zhao, X.,
Xiao, M., and Wei, H. (2021a). Forest fire detection
based on lightweight yolo. In 2021 33rd Chinese Con-
trol and Decision Conference (CCDC), pages 1560–
1565. IEEE.
Wang, S., Chen, T., Lv, X., Zhao, J., Zou, X., Zhao, X.,
Xiao, M., and Wei, H. (2021b). Forest fire detection
based on lightweight yolo. In 2021 33rd Chinese Con-
trol and Decision Conference (CCDC), pages 1560–
1565.
Wu, S. and Zhang, L. (2018). Using popular object de-
tection methods for real time forest fire detection. In
2018 11th International symposium on computational
intelligence and design (ISCID), volume 1, pages
280–284. IEEE.
Yang, S., Huang, Q., and Yu, M. (2024). Advancements
in remote sensing for active fire detection: a review
of datasets and methods. Science of the total environ-
ment, page 173273.
Zhang, L., Li, J., and Zhang, F. (2023a). An efficient forest
fire target detection model based on improved yolov5.
Fire, 6(8).
Zhang, L., Wang, M., Ding, Y., and Bu, X. (2023b). Ms-
frcnn: A multi-scale faster rcnn model for small target
forest fire detection. Forests, 14(3):616.
Zhang, Y., Chen, S., Wang, W., Zhang, W., and Zhang,
L. (2022). Pyramid attention based early forest fire
detection using uav imagery. In Journal of Physics:
Conference Series, volume 2363, page 012021. IOP
Publishing.
Zhao, L., Zhi, L., Zhao, C., and Zheng, W. (2022a). Fire-
yolo: A small target object detection method for fire
inspection. Sustainability, 14(9).
Zhao, L., Zhi, L., Zhao, C., and Zheng, W. (2022b). Fire-
yolo: a small target object detection method for fire
inspection. Sustainability, 14(9):4930.
Zhao, S., Liu, B., Chi, Z., Li, T., and Li, S. (2022c). Charac-
teristics based fire detection system under the effect of
electric fields with improved yolo-v4 and vibe. IEEE
Access, 10:81899–81909.
Real-Time Early Detection of Forest Fires Using Various YOLO11 Architectures
753