infrared transillumination using deep learning. Journal
of Dental Research, 98(11), 1227–1233.
Thanh, M. T. G., Toan, N. V., Ngoc, V. T. N., Tra, N. T.,
Giap, C. N., & Nguyen, D. M. (2022). Deep learning
application in dental caries detection using intraoral
photos taken by smartphones. Applied Sciences,
12(11), 5504. https://doi.org/10.3390/app12115504
Huang, Y.-P., & Lee, S.-Y. (2021). Deep learning for
caries detection using optical coherence tomography.
medRxiv. Preprint, May 23.
Park, E. Y., Cho, H., Kang, S., Jeong, S., & Kim, E.-K.
(2022). Caries detection with tooth surface
segmentation on intraoral photographic images using
deep learning. BMC Oral Health, 22, 573.
Holtkamp, A., Elhennawy, K., Cejudo Grano de Oro, J. E.,
Krois, J., Paris, S., & Schwendicke, F. (2021).
Generalizability of deep learning models for caries
detection in near-infrared light transillumination
images. Journal of Clinical Medicine, 10(5), 961.
Tareq, A., Faisal, M. I., Islam, M. S., Rafa, N. S.,
Chowdhury, T., Ahmed, S., Farook, T. H.,
Mohammed, N., & Dudley, J. (2023). Visual
diagnostics of dental caries through deep learning of
non-standardized photographs using a hybrid YOLO
ensemble and transfer learning model. International
Journal of Environmental Research and Public Health,
20(7), 5351.
Yoon, K., Jeong, H.-M., Kim, J.-W., Park, J.-H., & Choi,
J. (2024). AI-based dental caries and tooth number
detection in intraoral photos: Model development and
performance evaluation. Journal of Dentistry,
141,Article 014821.
Ryu, J., Lee, D.-M., Jung, Y.-H., Kwon, O., Park, S.,
Hwang, J., & Lee, J.-Y. (2023). Automated detection
of periodontal bone loss using deep learning and
panoramic radiographs: A convolutional neural
network approach. Applied Sciences, 13(9), 5261.
Chen, I. D. S., Yang, C.-M., Chen, M.-J., Chen, M.-C.,
Weng, R.-M., & Yeh, C.-H. (2023). Deep learning-
based recognition of periodontitis and dental caries in
dental X-ray images. Bioengineering, 10(8), 911.
https://doi.org/10.3390/bioengineering10080911
Amasya, H., et al. (2024). Development and validation of
an artificial intelligence software for periodontal bone
loss in panoramic imaging. International Journal of
Imaging Systems and Technology, 34, e22973.
Sunnetci, K. M., Ulukaya, S., & Alkan, A. (2022).
Periodontal bone loss detection based on hybrid deep
learning and machine learning models with a user-
friendly application. Biomedical Signal Processing
and Control, 77, 103844.
Tanriver, G., Tekkesin, M. S., & Ergen, O. (2021).
Automated detection and classification of oral lesions
using deep learning to detect oral potentially
malignant disorders. Cancers, 13(11), 2766.
Krishna, S. P., & Lavanaya, J. (2022). Oral cancers
diagnosis using deep learning for early detection. In
Proceedings of the IEEE Conference ICEARS.
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham,
S., Jantana, P., & Vicharueang, S. (2024). AI-based
analysis of oral lesions using novel deep convolutional
neural networks for early detection of oral cancer.
PLOS ONE.
Mira, E. S., Sapri, A. M. S., Aljehani, R. F., Jambi, B. S.,
Bashir, T., El-Kenawy, E.-S. M., & Saber, M. (2024).
Early diagnosis of oral cancer using image processing
and artificial intelligence. Vol. 14(01), 293–308.
Kumar, K. V., Palakurthy, S., Balijadaddanala, S. H.,
Pappula, S. R., & Lavudya, A. K. (2024). Early
detection and diagnosis of oral cancer using deep
neural network. Journal of Computer Allied
Intelligence, 2(2), 22–34.
]Haq, I. U., Ahmed, M., Assam, M., Ghadi, Y. Y., &
Algarni, A. (2023). Unveiling the future of oral
squamous cell carcinoma diagnosis: An innovative
hybrid AI approach for accurate histopathological
image analysis. IEEE Access, 11, 118281–118290.
Lin, H., Chen, H., Weng, L., Shao, J., & Lin, J. (2021).
Automatic detection of oral cancer in smartphone-
based images using deep learning for early diagnosis.
Journal of Biomedical Optics, 26(8), 086007-1.
Choi, E., Kim, D., Lee, J.-Y., & Park, H.-K. (2021).
Artificial intelligence in detecting temporomandibular
joint osteoarthritis on orthopantomogram. Scientific
Reports, 11, 10246.
Talaat, W. M., Shetty, S., Al Bayatti, S., Talaat, S.,
Mourad, L., Shetty, S., & Kaboudan, A. (2023). An
artificial intelligence model for the radiographic
diagnosis of osteoarthritis of the temporomandibular
joint. Scientific Reports, 13, 15972.
Lee, Y.-H., Jeon, S., Won, J.-H., Auh, Q.-S., & Noh, Y.-
K. (2024). Automated detection and visualization of
temporomandibular joint effusion with deep neural
network. Scientific Reports, 14, 18865.
https://doi.org/10.1038/s41598-024-69848-9
Su, T.-Y., Wu, J. C.-H., Chiu, W. C., Chen, T.-J., Lo, W.-
L., & Lu, H. H.-S. (2024). Automatic classification of
temporomandibular joint disorders by magnetic
resonance imaging and convolutional neural networks.
Journal of Dental Sciences.
Farook, T. H., & Dudley, J. (2020). Understanding
occlusion and temporomandibular joint function using
deep learning and predictive modeling. Journal of
Dental Research, 99, 1–5.