Control, vol. 84, Jul. 2023, Art. no. 104780, DOI:
10.1016/j.bspc.2023.104780.
D. Wu, J. Li, F. Dong, J. Liu, L. Jiang, J. Cao, X. Wu, and
X. Zhang, ‘‘Classification of seizure types based on
multi-class specific bands common spatial pattern and
penalized ensemble model,’’ Biomed. Signal Process.
Control, vol. 79, Jan. 2023, Art. no. 104118, DOI:
10.1016/j.bspc.2022.104118.
S. Abirami, P. Swarubini, J. Thomas, R. Yuvraj, R. N.
Menon, and A. R. J. Fredo, ‘‘Multi-class seizure type
classification using features extracted from the EEG,’’
Healthcare Transformation Inform. Artif. Intell., vol.
305, pp. 68–71, Jun. 2023, DOI: 10.3233/SHTI230426.
Wenjuan Xiong; Ewan S. Nurse; Elisabeth Lambert, Mark
J. Cook, Tatiana Kameneva, “Classification of
Epileptic and Psychogenic Non-Epileptic Seizures
Using Electroencephalography and
Electrocardiography”, IEEE Transactions on Neural
Systems and Rehabilitation Engineering, Vol .31, June
2023, DOI: 10.1109/TNSRE.2023.3288138.
H. Alshaya and M. Hussain, ‘‘EEG-based classification of
epileptic seizure types using deep network model,’’
Mathematics, vol. 11, no. 10, p. 2286, May 2023, DOI:
10.3390/math11102286.
R. K. Joshi, V. M. Kumar, M. Agrawal, A. Rao, L. Mohan,
M. Jayachandra, and H. J. Pandya, ‘‘Spatiotemporal
analysis of interictal EEG for automated seizure
detection and classification,’’ Biomed. Signal Process.
Control, vol. 79, Jan. 2023, Art. no. 104086, DOI:
10.1016/j.bspc.2022.104086.
C. O. Adetunji, O. T. Olaniyan, O. Adeyomoye, A. Dare,
M. J. Adeniyi, and A. Enoch, ‘‘An intelligent diagnostic
approach for epileptic seizure detection and
classification using machine learning,’’ in Artificial
Intelligence for Neurological Disorders. New York,
NY, USA: Academic Press, 2023, pp. 225–243
DOI:10.1016/B978-0-323-90277-9.00011-0.
R. U. N. Neelappa and H. M. Harish, ‘‘Automatic diseases
detection and classification of EEG signal with
pervasive computing using machine learning,’’ Int. J.
Pervasive Comput. Commun., vol. 19, no. 3, pp. 432–
450, May 2023, DOI: 10.1108/IJPCC-09-2021-0216.
S. Poorani and P. Balasubramanie, ‘‘Deep learning based
epileptic seizure detection with EEG data,’’ Int. J. Syst.
Assurance Eng. Manage., vol. 2023, pp. 1–10, Jan.
2023.
X. Wang, C. Zhang, T. Kärkkäinen, Z. Chang, and F. Cong,
‘‘Channel increment strategy-based 1D. convolutional
neural networks for seizure prediction using
intracranial EEG,’’ IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 31, pp. 316–325, 2023, DOI:
10.1109/TNSRE.2022.3222095.
X. Yan, D. Yang, Z. Lin, and B. Vucetic, “Significant low-
dimensional spectral-temporal features for seizure
detection,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 30, pp. 668–677, 2022, DOI:
10.1109/TNSRE.2022.3156931.
P. Boonyakitanont, A. Lek-Uthai, K. Chomtho, and J.
Songsiri, “A review of feature extraction and
performance evaluation in epileptic seizure detection
using EEG,” Biomed. Signal Process. Control, vol. 57,
pp. 1–28, 2020, DOI :10.1016/j.bspc.2019.101702.
M. Ma, Y. Cheng, Y. Wang, X. Li, Q. Mao, Z. Zhang, Z.
Chen, and Y. Zhou, ‘‘Early prediction of epileptic
seizure based on the BNLSTMCASA model,’’ IEEE
Access, vol. 9, pp. 79600–79610, 2021, DOI:
10.1109/ACCESS.2021.3084635.
Y. Zhang et al., “Epilepsy seizure prediction on EEG using
common spatial pattern and convolutional neural
network,” IEEE Journal of Biomedical and Health
Informatics, vol. 24, no. 2, pp. 465–474, Feb 2020,
DOI: 10.1109/JBHI.2019.2933046.
N. Ilakiyaselvan, A. N. Khan, and A. Shahina, “Deep
learning approach to detect seizure using reconstructed
phase space images,” J. Biomed. Res., vol. 34, no. 3,
pp. 240–250, 2020.
R. D. Thijs, R. Surges, T. J. O’Brien, and J. W. Sander,
‘‘Epilepsy in adults,’’ Lancet, vol. 393, no. 10172, pp.
689–701, Feb. 2019, DOI: 10.1016/s0140-
6736(18)32596-0.
I. R. D. Saputro, N. D. Maryati, S. R. Solihati, I. Wijayanto,
S. Hadiyoso, and R. Patmasari, ‘‘Seizure type
classification on EEG signal using support vector
machine,’’ J. Phys., Conf. Ser., vol. 1201, no. 1, May
2019, Art. no. 012065, DOI: 10.1088/1742-
6596/1201/1/012065.
Z. Jiang, F.-L. Chung, and S. Wang, ‘‘Recognition of
multiclass epileptic EEG signals based on knowledge
and label space inductive transfer,’’ IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 27, no. 4, pp. 630–642, Apr.
2019, DOI: 10.1109/TNSRE.2019.2904708.
L. Wang, W. Xue, Y. Li, M. Luo, J. Huang, W. Cui, and C.
Huang, “Automatic epileptic seizure detection in EEG
signals using multidomain feature extraction and
nonlinear analysis,” Entropy, vol. 19, no. 6, p. 222,
2017.
S. Ryu and I. Joe, ‘‘A hybrid DenseNet-LSTM model for
epileptic seizure prediction,’’ Appl. Sci., vol. 11, no.
16, p. 7661, Aug. 2021, DOI: 10.3390/e19060222.
S. N. Baldassano et al., “Crowdsourcing seizure detection:
algorithm development and validation on human
implanted device recordings,” Brain, vol. 140, no. 6, pp.
1680–1691, 2017, DOI: 10.1093/brain/awx098.
A. K. Jaiswal and H. Banka, “Local pattern transformation
based feature extraction techniques for classification of
epileptic EEG signals,” Biomedical Signal Processing
and Control, vol. 34, pp. 81–92, 2017, DOI:
10.1016/j.bspc.2017.01.005.
Y. Zhang et al., “Epilepsy seizure prediction on EEG using
common spatial pattern and convolutional neural
network,” IEEE Journal of Biomedical and Health
Informatics, vol. 24, no. 2, pp. 465–474, Feb 2020,
DOI: 10.1109/JBHI.2019.2933046.
M. Sharma, R. B. Pachori, and U. R. Acharya, ‘‘A new
approach to characterize epileptic seizures using
analytic time-frequency flexible wavelet transform and
fractal dimension,’’ Pattern Recognit. Lett., vol. 94, pp.
172–179, Jul. 2017, DOI:
10.1016/j.patrec.2017.03.023.