REFERENCES
Adel, H., Vu, N. T., Kraus, F., Schlippe, T., Li, H., &
Schultz, T. (2013). Recurrent neural network language
modeling for code switching conversational speech.
ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 8411–
8415. https://doi.org/10.1109/ICASSP.2013.6639306
Agüero-Torales, M. M., Abreu Salas, J. I., & López-
Herrera, A. G. (2021). Deep learning and multilingual
sentiment analysis on social media data: An overview.
Applied Soft Computing, 107, 107373.
https://doi.org/10.1016/J.ASOC.2021.107373
Albahoth, Z. M., Jabar, M. A. bin A., & Jalis, F. M. B. M.
(2024). A Systematic Review of the Literature on Code-
Switching and a Discussion on Future Directions.
International Journal of Academic Research in Business
and Social Sciences, 14(2).
https://doi.org/10.6007/ijarbss/v14-i2/20452
AlGhamdi, F., Molina, G., Diab, M., Solorio, T., Hawwari,
A., Soto, V., & Hirschberg, J. (2016). Part of Speech
Tagging for Code Switched Data. EMNLP 2016 - 2nd
Workshop on Computational Approaches to Code
Switching, CS 2016 - Proceedings of the Workshop,
98–107. https://doi.org/10.18653/V1/W16-5812
Chakravarthi, B. R., Jose, N., Suryawanshi, S., Sherly, E.,
& Mccrae, J. P. (2020). A Sentiment Analysis Dataset
for Code-Mixed Malayalam-English.
https://pypi.org/project/langdetect/
Code-switching. (n.d.). Retrieved November 11, 2024, from
https://www.cambridge.org/core/books/codeswitching/
11E359BFC45F331519170EE425117736
Das, D., & Petrov, S. (2011). Unsupervised part-of-speech
tagging with bilingual graph-based projections. ACL-
HLT 2011 - Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies, 1, 600–609.
Das, S. D., Mandal, S., & Das, D. (2019). Language
identification of Bengali-English code-mixed data
using character & phonetic based LSTM models. ACM
International Conference Proceeding Series, 60–64.
https://doi.org/10.1145/3368567.3368578
Dutta, S., Agrawal, H., & Kumar Roy, P. (2021). Sentiment
Analysis on Multilingual Code-Mixed Kannada
Language. https://dravidian-
codemix.github.io/2021/index.html
Gardner-Chloros, P. (2009). Code-switching. Code-
Switching, 1–242.
https://doi.org/10.1017/CBO9780511609787
Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain
adaptation for large-scale sentiment classification: A
deep learning approach. Proceedings of the 28th
International Conference on Machine Learning, ICML
2011, 1, 513–520.
Hofstede, G. (2001). Culture’s Consequences: Comparing
Values, Behaviors, Institutions, and Organizations
Across Nations. Culture’s Consequences: Comparing
Values, Behaviors, Institutions, and Organizations
Across Nations, 41(7), 861–862.
https://doi.org/https://doi.org/10.1016/S0005-
7967(02)00184-5
Jamatia, A., Swamy, S. D., Gambäck, B., Das, A., &
Debbarma, S. (2020). Deep Learning Based Sentiment
Analysis in a Code-Mixed English-Hindi and English-
Bengali Social Media Corpus. International Journal on
Artificial Intelligence Tools, 29(5).
https://doi.org/10.1142/S0218213020500141
Kasmuri, E., Fakulti, H. B., Maklumat, T., Komunikasi, D.,
& Maklumat, F. T. (2020). Segregation of Code-
Switching Sentences using Rule-Based Technique. Int.
J. Advance Soft Compu. Appl, 12(1).
Kim, H. (n.d.). 1 Semi Annual Edition.
Klementiev, A., Titov, I., & Bhattarai, B. (2012). Inducing
crosslingual distributed representations of words. 24th
International Conference on Computational Linguistics
- Proceedings of COLING 2012: Technical Papers,
December, 1459–1474.
Kumari, J., & Kumar, A. (2021). Offensive Language
Identification on Multilingual Code Mixing Text.
CEUR Workshop Proceedings, 3159, 643–650.
https://github.com/Abhinavkmr/Dravidian-hate-
speech.git
Mamta, & Ekbal, A. (2025). Quality achhi hai (is good),
satisfied! Towards aspect based sentiment analysis in
code-mixed language. Computer Speech and Language,
89. https://doi.org/10.1016/j.csl.2024.101668
Myers-Scotton, C. (1993). Common and Uncommon
Ground: Social and Structural Factors in
Codeswitching. Language in Society, 22(4), 475–503.
https://doi.org/10.1017/S0047404500017449
P, K. V., & Mahender, C. N. (2024). A Named Entity
Recognition System for the Marathi Language.
JOURNAL OF ADVANCED APPLIED SCIENTIFIC
RESEARCH, 6(3).
https://doi.org/10.46947/JOAASR632024937
Pang, B., & Lee, L. (2008). Opinion mining and sentiment
analysis. Found Trends Inf Retr, 2(1–2), 1–135.
https://doi.org/10.1561/1500000011
Patwa, P., Aguilar, G., Kar, S., Pandey, S., Srinivas, P. Y.
K. L., Gambäck, B., Chakraborty, T., Solorio, T., &
Das, A. (2020). SemEval-2020 Task 9: Overview of
Sentiment Analysis of Code-Mixed Tweets. 14th
International Workshops on Semantic Evaluation,
SemEval 2020 - Co-Located 28th International
Conference on Computational Linguistics, COLING
2020, Proceedings, 774–790.
https://doi.org/10.18653/v1/2020.semeval-1.100
Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-
López, L. A., & Martín-Valdivia, M. T. (2021). No
Title. 166(114), 120.
https://doi.org/10.1016/j.eswa.2020.114120
Santos, C. dos, & Gatti, M. (2014). Deep Convolutional
Neural Networks for Sentiment Analysis of Short Texts
(pp. 69–78). https://aclanthology.org/C14-1008
Sharma, G., Chinmay, R., & Sharma, R. (2023a). Late
Fusion of Transformers for Sentiment Analysis of
Code-Switched Data. Findings of the Association for
Computational Linguistics: EMNLP 2023, 6485–6490.