Holographic Information”, Sensors 2023, 23, 1095.
https://doi.org/10.3390/s23031095
RN UM, Basavaraju L. Deep Learning-based Multi-class
Three-dimensional (3-D) Object Classification using
Phase-only Digital Holographic Information. IgMin
Res. Jul 09, 2024; 2(7): 550-557. IgMin ID: igmin216;
DOI:10.61927/igmin216; Available at:
igmin.link/p216
Reddy, B.L., Uma Mahesh, R.N. and Nelleri, A., 2022.
“Deep convolutional neural network for three-
dimensional objects classification using off-axis digital
Fresnel holography”, Journal of Modern
Optics, 69(13), pp.705-717.
https://doi.org/10.1080/09500340.2022.2081371
Uma Mahesh, R.N., Lokesh Reddy, B., Nelleri, A. (2022).
Deep Learning-Based Multi-class 3D Objects
Classification Using Digital Holographic Complex
Images. In: Sivasubramanian, A., Shastry, P.N., Hong,
P.C. (eds) Futuristic Communication and Network
Technologies. VICFCNT 2020. Lecture Notes in
Electrical Engineering, vol 792. Springer, Singapore.
https://doi.org/10.1007/978-981-16-4625-6_43
U. M. R N and K. B, “Three-dimensional (3-D) objects
classification by means of phase-only digital
holographic information using Alex Network”, 2024
International Conference on Signal Processing,
Computation, Electronics, Power and
Telecommunication (IConSCEPT), Karaikal, India,
2024, pp. 1-5, doi:
10.1109/IConSCEPT61884.2024.10627906.
Mahesh, R.N.U., Nelleri, A. “Deep convolutional neural
network for binary regression of three-dimensional
objects using information retrieved from digital
Fresnel holograms”, Appl. Phys. B 128, 157 (2022).
https://doi.org/10.1007/s00340-022-07877-w
Mahesh, R.N.U., Nelleri, A. (2023). “Machine Learning-
Based Binary Regression Task of 3D Objects in
Digital Holography”, In: Subhashini, N., Ezra,
M.A.G., Liaw, SK. (eds) Futuristic Communication
and Network Technologies. VICFCNT 2021. Lecture
Notes in Electrical Engineering, vol 995. Springer,
Singapore. https://doi.org/10.1007/978-981-19-9748-
8_34
Lam, H.H., Tsang, P.W.M. and Poon, T.C., 2019.
“Ensemble convolutional neural network for
classifying holograms of deformable objects”, Optics
Express, 27(23), pp.34050-34055.
https://doi.org/10.1364/OE.27.034050
Kim, S.J., Wang, C., Zhao, B., Im, H., Min, J., Choi, H.J.,
Tadros, J., Choi, N.R., Castro, C.M., Weissleder, R.
and Lee, H., 2018. “Deep transfer learning-based
hologram classification for molecular diagnostics”,
Scientific reports, 8(1), p.17003. doi: 10.1038/s41598-
018-35274-x.
Pitkäaho, T., Manninen, A. and Naughton, T.J., 2018,
June. “Classification of digital holograms with deep
learning and hand-crafted features”, In Digital
Holography and Three-Dimensional Imaging (pp.
DW2F-3). Optica Publishing Group.
https://doi.org/10.1364/DH.2018.DW2F.3
Trieu, Q. and Nehmetallah, G., 2024. “Deep learning
based coherence holography reconstruction of 3D
objects”, Applied Optics, 63(7), pp.B1-B15.
https://doi.org/10.1364/AO.503034
Tahara, T., 2024. “Incoherent digital holography with two
polarization-sensitive phase-only spatial light
modulators and reduced number of exposures”,
Applied Optics, 63(7), pp.B24-B31.
https://doi.org/10.1364/AO.505624
Störk, T., Seyler, T., Fratz, M., Bertz, A., Hensel, S. and
Carl, D., 2024. “Detecting vibrations in digital
holographic multiwavelength measurements using
deep learning”, Applied Optics, 63(7), pp.B32-B41.
https://doi.org/10.1364/AO.507303