
Table 1: Performance Analysis on OSCD Data
Techniques Accuracy (%) Precision (%) Recall (%) F1-score (%) IoU (%) Kappa co-efficient (%)
EffCDNet 92.5 92.6 87.7 89.2 98 -
V-BANet 99.29 98.93 98.95 98.87 98.31 -
UCDNet 99.30 95.53 86.16 89.21 - 88.85
RSCDNet 99.5 98.40 98.30 98.20 96 98.10
IU-Net 97.38 98.64 98.64 98.65 97.34 -
Table 2: Performance Analysis on SECOND Data
Techniques Accuracy (%) Precision (%) Recall (%) F1-score (%) IoU (%) Kappa co-efficient (%)
EffCDNet 91.5 94.6 85.5 88.6 95 -
V-BANet 96.83 97.29 96.31 97.6 98.5 -
UCDNet 96.5 98.78 87.8 89.30 - 88.85
RSCDNet 98.5 98.7 97 98.30 96 98
IU-Net 97.4 98 97.5 96.8 97.6 -
Figure 5: Analysis on SECOND Data
and Kappa. Two data sets are selected for experi-
mentation: OSCD and SECOND. The different CD
techniques proposed by various experts are imple-
mented and analyzed on the chosen dataset. Among
EffCDNet, V-BANet, UCDNet, RSCDNet, and IU-
Net, RSCDNet demonstrated superior performance,
achieving an accuracy rate of 99.5%.
REFERENCES
Alshehhi, R. and Marpu, P. R. (2023). Change detection
using multi-scale convolutional feature maps of bi-
temporal satellite high-resolution images. European
Journal of Remote Sensing, 56(1):2161419.
Bao, Q. and Guo, P. (2004). Comparative studies on sim-
ilarity measures for remote sensing image retrieval.
In 2004 IEEE International Conference on Systems,
Man and Cybernetics (IEEE Cat. No. 04CH37583),
volume 1, pages 1112–1116. IEEE.
Barkur, R., Suresh, D., Lal, S., Reddy, C. S., Diwakar, P.,
et al. (2022). Rscdnet: A robust deep learning ar-
chitecture for change detection from bi-temporal high
resolution remote sensing images. IEEE Transactions
on Emerging Topics in Computational Intelligence,
7(2):537–551.
Basavaraju, K., Sravya, N., Lal, S., Nalini, J., Reddy, C. S.,
and Dell’Acqua, F. (2022). Ucdnet: A deep learning
model for urban change detection from bi-temporal
multispectral sentinel-2 satellite images. IEEE Trans-
actions on Geoscience and Remote Sensing, 60:1–10.
Caye Daudt, R., Le Saux, B., Boulch, A., and Gousseau, Y.
(2019). Oscd - onera satellite change detection.
Chughtai, A. H., Abbasi, H., and Karas, I. R. (2021). A
review on change detection method and accuracy as-
sessment for land use land cover. Remote Sensing Ap-
plications: Society and Environment, 22:100482.
Fang, H., Du, P., and Wang, X. (2022). A novel unsu-
pervised binary change detection method for vhr op-
tical remote sensing imagery over urban areas. In-
ternational Journal of Applied Earth Observation and
Geoinformation, 108:102749.
Fatemi Nasrabadi, S. B. (2019). Questions of concern in
drawing up a remote sensing change detection plan.
Journal of the Indian Society of Remote Sensing,
47(9):1455–1469.
Gomroki, M., Hasanlou, M., and Reinartz, P. (2022). Iunet-
ucd: Improved u-net with weighted binary cross-
entropy loss function for urban change detection of
sentinel-2 satellite images.
Kondmann, L., Toker, A., Saha, S., Sch
¨
olkopf, B., Leal-
Taix
´
e, L., and Zhu, X. X. (2021). Spatial context
awareness for unsupervised change detection in opti-
cal satellite images. IEEE Transactions on Geoscience
and Remote Sensing, 60:1–15.
Patil, P. S., Holambe, R. S., and Waghmare, L. M. (2021).
Effcdnet: Transfer learning with deep attention net-
work for change detection in high spatial resolu-
tion satellite images. Digital Signal Processing,
118:103250.
Prasad, J., Sreelatha, M., and SuvarnaVani, K. (2023).
V-banet: Land cover change detection using effec-
tive deep learning technique. Ecological Informatics,
75:102019.
Qiu, L., Gao, L., Ding, Y., Li, Y., Lu, H., and Yu, W. (2013).
Change detection method using a new difference im-
age for remote sensing images. In 2013 IEEE Inter-
national Geoscience and Remote Sensing Symposium
- IGARSS, pages 4293–4296.
Comparative Examination of Different Change Detection Methods for Remote Sensing Imagery
349