
the confines of two sentences. The outcomes hold
significant promise for downstream applications,
particularly in creating knowledge bases. By in-
corporating the extracted information into existing
healthcare systems, professionals can access a wealth
of structured and interrelated data. This, in turn, can
contribute decision making regarding patient care
and treatment plans.
REFERENCES
Beltagy, I., Lo, K., and Cohan, A. (2019). SCIBERT: A pre-
trained language model for scientific text. In EMNLP-
IJCNLP 2019 - 2019 Conference on Empirical Meth-
ods in Natural Language Processing and 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, Proceedings of the Conference.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003a). Latent
Dirichlet allocation. Journal of Machine Learning Re-
search, 3(4-5).
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003b). Latent
Dirichlet allocation. Journal of Machine Learning Re-
search, 3(4-5).
Boudjellal, N., Zhang, H., Khan, A., Ahmad, A., Naseem,
R., Shang, J., and Dai, L. (2021). ABioNER: A BERT-
Based Model for Arabic Biomedical Named-Entity
Recognition. Complexity, 2021.
Brundha, J., Nair, P. C., Gupta, D., and Agarwal, J. (2023).
Name entity recognition for Air Traffic Control tran-
scripts using deep learning based approach. In 2023
IEEE 20th India Council International Conference,
INDICON 2023.
Chiu, J. P. and Nichols, E. (2016). Named Entity Recogni-
tion with Bidirectional LSTM-CNNs. Transactions of
the Association for Computational Linguistics, 4.
Del Corro, L. and Gemulla, R. (2013). ClausIE: Clause-
based open information extraction. In WWW 2013 -
Proceedings of the 22nd International Conference on
World Wide Web.
Do
ˇ
gan, R. I., Leaman, R., and Lu, Z. (2014). NCBI disease
corpus: A resource for disease name recognition and
concept normalization. Journal of Biomedical Infor-
matics, 47.
G, V., Gupta, D., and Kanjirangat, V. (2023). Semi Super-
vised Approach for Relation Extraction in Agriculture
Documents.
Gopalakrishnan, A., Soman, K. P., and Premjith, B. (2019).
A Deep Learning-Based Named Entity Recognition in
Biomedical Domain. In Lecture Notes in Electrical
Engineering, volume 545.
Gridach, M. (2017). Character-level neural network for
biomedical named entity recognition. Journal of
Biomedical Informatics, 70.
Iovine, A., Fang, A., Fetahu, B., Rokhlenko, O., and Mal-
masi, S. (2022). CycleNER: An Unsupervised Train-
ing Approach for Named Entity Recognition. In
WWW 2022 - Proceedings of the ACM Web Confer-
ence 2022.
KafiKang, M. and Hendawi, A. (2023). Drug-Drug Inter-
action Extraction from Biomedical Text Using Rela-
tion BioBERT with BLSTM. Machine Learning and
Knowledge Extraction, 5(2).
Kalyan, K. S., Rajasekharan, A., and Sangeetha, S. (2022).
AMMU: A survey of transformer-based biomedical
pretrained language models.
Krallinger, M., Rabal, O., Leitner, F., Vazquez, M., Salgado,
D., Lu, Z., Leaman, R., Lu, Y., Ji, D., Lowe, D. M.,
Sayle, R. A., Batista-Navarro, R. T., Rak, R., Huber,
T., Rockt
¨
aschel, T., Matos, S., Campos, D., Tang, B.,
Xu, H., Munkhdalai, T., Ryu, K. H., Ramanan, S. V.,
Nathan, S.,
ˇ
Zitnik, S., Bajec, M., Weber, L., Irmer, M.,
Akhondi, S. A., Kors, J. A., Xu, S., An, X., Sikdar,
U. K., Ekbal, A., Yoshioka, M., Dieb, T. M., Choi,
M., Verspoor, K., Khabsa, M., Giles, C. L., Liu, H.,
Ravikumar, K. E., Lamurias, A., Couto, F. M., Dai,
H. J., Tsai, R. T. H., Ata, C., Can, T., Usi
´
e, A., Alves,
R., Segura-Bedmar, I., Mart
´
ınez, P., Oyarzabal, J.,
and Valencia, A. (2015). The CHEMDNER corpus
of chemicals and drugs and its annotation principles.
Journal of Cheminformatics, 7.
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and
Kang, J. (2020). BioBERT: A pre-trained biomedi-
cal language representation model for biomedical text
mining. Bioinformatics, 36(4).
Li, J., Sun, A., Han, J., and Li, C. (2020). A Survey on
Deep Learning for Named Entity Recognition. IEEE
Transactions on Knowledge and Data Engineering.
Shahina, K. K., Jyothsna, P. V., Prabha, G., Premjith, B.,
and Soman, K. P. (2019). A Sequential Labelling Ap-
proach for the Named Entity Recognition in Arabic
Language Using Deep Learning Algorithms. In 2019
International Conference on Data Science and Com-
munication, IconDSC 2019.
Smith, L., Tanabe, L. K., Ando, R., Kuo, C. J., Chung, I. F.,
Hsu, C. N., Lin, Y. S., Klinger, R., Friedrich, C. M.,
Ganchev, K., Torii, M., Liu, H., Haddow, B., Stru-
ble, C. A., Povinelli, R. J., Vlachos, A., Baumgartner,
W. A., Hunter, L., Carpenter, B., Tsai, R. T. H., Dai,
H. J., Liu, F., Chen, Y., Sun, C., Katrenko, S., Adri-
aans, P., Blaschke, C., Torres, R., Neves, M., Nakov,
P., Divoli, A., Ma
˜
na-L
´
opez, M., Mata, J., and Wilbur,
W. J. (2008). Overview of BioCreative II gene men-
tion recognition.
Srivastava, S., Paul, B., and Gupta, D. (2022). Study
of Word Embeddings for Enhanced Cyber Security
Named Entity Recognition. In Procedia Computer
Science, volume 218.
Tai, W., Kung, H. T., Dong, X., Comiter, M., and Kuo, C. F.
(2020). exBERT: Extending pre-trained models with
domain-specific vocabulary under constrained train-
ing resources. In Findings of the Association for
Computational Linguistics Findings of ACL: EMNLP
2020.
Veena, G., Gupta, D., and Kanjirangat, V. (2023a). Semi-
Supervised Bootstrapped Syntax-Semantics-Based
Approach for Agriculture Relation Extraction for
Knowledge Graph Creation and Reasoning. IEEE Ac-
cess, 11.
Unsupervised Approach for Named Entity Recognition in Biomedical Documents Using LDA-BERT Models
161