
preventive medicine,” Adv. Funct. Mater., vol. 27, no.
15, Apr. 2017, Art. no. 1605271
B. D. Wiltshire, M. Alijani, S. Mohammadi, A. Hosseini, J.
M. Macak, and M. H. Zarifi, “High-frequency TiO2
nanotube-adapted microwave coplanar waveguide
resonator for high-sensitivity ultraviolet detection,”
ACS Appl. Mater. Interface, vol. 14, no. 4, pp. 6203–
6211, Feb. 2022.
M. H. Zarifi, H. Sadabadi, S. H. Hejazi, M. Daneshmand,
and A. Sanati-Nezhad, “Noncontact and nonintrusive
microwavemicrofluidic flow sensor for energy and
biomedical engineering,” Sci. Rep., vol. 8, no. 1, p. 139,
Jan. 2018
J. Kilpijärvi, N. Halonen, J. Juuti, and J. Hannu,
“Microfluidic microwave sensor for detecting saline in
biological range,” Sensors, vol. 19, no. 4, p. 819, Feb.
2019.
A. Ebrahimi, F. J. Tovar-Lopez, J. Scott, and K. Ghorbani,
“Differential microwave sensor for characterization of
glycerol– water solutions,” Sens. Actuators B, Chem.,
vol. 321, Oct. 2020, Art. no. 128561.
W. Liu, J. Zhang, and L. Xu, “A transmission line sensor
with sensitivity improved for detection of ionic
concentration in microfluidic channel,” IEEE Sensors
J., vol. 21, no. 21, pp. 24066– 24074, Nov. 2021.
A. Ebrahimi et al., “Highly sensitive phase-variation
dielectric constant sensor based on a capacitively-
loaded slow-wave transmission line,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 68, no. 7, pp. 2787–
2799, Jul. 2021.
O. Korostynska, A. Mason, and A. Al-Shamma’a,
“Microwave sensors for the non-invasive monitoring of
industrial and medical applications,” Sensor Rev., vol.
34, no. 2, pp. 182–191, Mar. 2014.
Z. Abbasi, M. H. Zarifi, P. Shariati, Z. Hashisho, and M.
Daneshmand, “Flexible coupled microwave ring
resonators for contactless microbead assisted volatile
organic compound detection,” in IEEE MTT-S Int.
Microw. Symp. Dig., Jun. 2017, pp. 1228–1231.
M. Abdolrazzaghi, M. H. Zarifi, and M. Daneshmand,
“Wireless communication in feedback-assisted active
sensors,” IEEE Sensors J., vol. 16, no. 22, pp. 8151–
8157, Nov. 2016.
J. D. Baena et al., “Equivalent-circuit models for split-ring
resonators and complementary split-ring resonators
coupled to planar transmission lines,” IEEE Trans.
Microw. Theory Techn., vol. 53, no. 4, pp. 1451–1460,
Apr. 2005.
D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ,
USA: Wiley, 2012.
K. Luckasavitch, R. Kozak, K. Golovin, and M. H. Zarifi,
“Magnetically coupled planar microwave resonators for
real-time saltwater ice detection,” Sens. Actuators A,
Phys., vol. 333, Jan. 2022, Art. no. 113245.
M. H. Zarifi, S. Farsinezhad, K. Shankar, and M.
Daneshmand, “Liquid sensing using active feedback
assisted planar microwave resonator,” IEEE Microw.
Wireless Compon. Lett., vol. 25, no. 9, pp. 621–623,
Sep. 2015.
Mohammadi, K. K. Adhikari, M. C. Jain, and M. H. Zarifi,
“Highresolution, sensitivity-enhanced active resonator
sensor using substrateembedded channel for
characterizing low-concentration liquid mixtures,”
IEEE Trans. Microw. Theory Techn., vol. 70, no. 1, pp.
576–586, Jan. 2022.
M. H. Zarifi, A. Gholidoust, M. Abdolrazzaghi, P. Shariaty,
Z. Hashisho, and M. Daneshmand, “Sensitivity
enhancement in planar microwave active-resonator
using metal organic framework for CO2 detection,”
Sens. Actuators B, Chem., vol. 255, pp. 1561–1568,
Feb. 2018.
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
“Magnetism from conductors and enhanced nonlinear
phenomena,” IEEE Trans. Microw. Theory Techn., vol.
47, no. 11, pp. 2075–2084, Nov. 1999.
W. Wang, Q. Cao, and Y. Zheng, “Bandstop frequency-
selective structures based on stepped-impedance loop
resonators: Design, analysis, and measurement,” IEEE
Trans. Antennas Propag., vol. 67, no. 2, pp. 1053–1064,
Feb. 2019
H. Torun, F. Cagri Top, G. Dundar, and A. D. Yalcinkaya,
“An antennacoupled split-ring resonator for
biosensing,” J. Appl. Phys., vol. 116, no. 12, Sep. 2014,
Art. no. 124701.
S. Zahertar, Y. Wang, R. Tao, J. Xie, Y. Q. Fu, and H.
Torun, “A fully integrated biosensing platform
combining acoustofluidics and electromagnetic
metamaterials,” J. Phys. D, Appl. Phys., vol. 52, no. 48,
Sep. 2019, Art. no. 485004
C. A. Balanis, Antenna Theroy: Analysis and Design.
Hoboken, NJ, USA: Wiley, 2012.
W. Wang et al., “Novel coil transducer induced
thermoacoustic detection of rail internal defects
towards intelligent processing,” IEEE Trans. Ind.
Electron., vol. 71, no. 2, pp. 2100–2111, Feb. 2024
W. Wang et al., “Wideband gain enhancement of MIMO
antenna and its application in FMCW radar sensor
integrated with CMOSbased transceiver chip for human
respiratory monitoring,” IEEE Trans. Antennas
Propag., vol. 71, no. 1, pp. 318–329, Jan. 2023.
M. N. Abdallah, T. K. Sarkar, M. Salazar-Palma, and V.
Monebhurrun, “Where does the far field of an antenna
start?” IEEE Antennas Propag. Mag., vol. 58, no. 5, pp.
115–124, Oct. 2016.
N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou,
and C. M. Soukoulis, “Electric coupling to the magnetic
resonance of split ring resonators,” Appl. Phys. Lett.,
vol. 84, no. 15, pp. 2943–2945, Apr. 2004.
Hosseini, Arezoo, et al. "Planar Sensing Platform Based on
Split Ring Resonators and Microstrip Yagi-Uda
Antennas." IEEE Sensors Journal (2023).
INCOFT 2025 - International Conference on Futuristic Technology
92