Pignaton, Carla Schwengber ten Caten, and Alex de
Lima Teodoro da Penha,V2023. Predictive
Maintenance in the Military Domain: A Systematic
Review of the Literature, ACM Comput. Surv. 55, 13s,
Article 267 (December 2023), 30 pages, 2023.
Zhang, Bin, and Yung C. Shin, A probabilistic neural
network for uncertainty prediction with applications to
manufacturing process monitoring, Applied Soft
Computing 124 (2022): 108995,2022.
Seyed Mostafa Hallaji, Yihai Fang, Brandon K. Winfrey,
Predictive maintenance of pumps in civil
infrastructure: State-of-the-art, challenges and future
directions, Automation in Construction, Volume 134,
104049, ISSN 0926-5805,2022.
Nashed, Mohamad Shadi, Renno, Jamil, Mohamed, M.
Shadi, Mod- elling fatigue uncertainty by means of
nonconstant variance neural networks, Fatigue &
Fracture of Engineering Materials & Structures, 45,
9, ISSN - 8756-758X, 2468, 24802022, 2022.
Drakaki, Maria & Karnavas, Yannis & Tziafettas, Ioannis
& Linardos, Vasilis & Tzionas, Panagiotis,Machine
Learning and Deep Learning Based Methods Toward
Industry 4.0 Predictive Maintenance in Induction
Motors: State of the Art Survey. Journal of Industrial
Engineering and Management, 2022.
Kane, Archit P., et al.Predictive maintenance using
machine learning.” arXiv preprint arrive: 2205.
09402, 2022.
Zdravkovic´, M., Panetto, H., & Weichhart, G. 2021, AI-
enabled Enterprise Information Systems for
Manufacturing, Enterprise Information Systems,
16(4), 668–720, 2021.
H. Zhu, S. A. Z. Ahmed, M. A. Alfakih, M. A. Abdelbaky,
A. R. Sayed and M. A. A. Saif, Photovoltaic Failure
Diagnosis Using Sequential Probabilistic Neural
Network Model, in IEEE Access, vol. 8, pp. 220507-
220522, 2020.
Tyagi, Vinayak, et al. A survey: Predictive maintenance
modeling using machine learning techniques,
Proceedings of the International Conference on
Innovative Computing & Communications
(ICICC),2020.
Dalzochio, Jovani & Kunst, Rafael & Pignaton de Freitas,
Edison & Binotto, Alecio & Sanyal, Srijnan & Favilla,
Jose & Barbosa, Jorge, 2020 Machine learning and
reasoning for predictive maintenance in Industry 4.0:
Current status and challenges. Computers in Industry,
2020.
Li, A.; Yang, X.; Dong, H.; Xie, Z.; Yang, C. Machine
Learning-Based Sensor Data Modeling Methods for
Power Transformer PHM. Sensors 2018, 18, 4430,
2018.
Chuan-Jun Su, Shi-Feng Huang, Real-time big data
analytics for hard disk drive predictive maintenance,
Computers & Electrical Engineering, Volume 71,
2018, Pages 93-101, ISSN 0045-7906, 2018.
S. Mishra et al., Classification of power system faults using
voltage Concordia pattern feature aided PNN. 2016
IEEE 6th International Conference on Power Systems
(ICPS) (2016): 1-6, 2016.
Yi J-H, Wang J, Wang G-G. Improved probabilistic neural
networks with self-adaptive strategies for transformer
fault diagnosis problem. Advances in Mechanical
Engineering. 2016;8(1),2016.
Devendiran, S., and K. Manivannan, Vibration signal based
multi-fault diagnosis of gears using roughset
integrated PCA and neural networks, Int. J. Mech.
Mechatron. Eng 15.01,2015.
Hameed, Shameer V., and K. M. Shameer, Proactive
Condition Monitoring Systems for Power Plants,
International Journal of Scientific and Research
Publications 3.11 (2013): 1-5,2013.
Mellit, Adel & Drif, Mahmoud & Ali, Malek, 2010, EPNN-
based prediction of meteorological data for renewable
energy systems. Revue des Energies Renouvelables.
13. 25-47. 10. 54966 / jreen . v13 i1. 176 ,2010.
Crupi, Vincenzo, Eugenio Guglielmino, and G. Milazzo,
Neural- network-based system for novel fault
detection in rotating machinery, Journal of Vibration
and Control 10.8 (2004): 1137-1150, 2004.
Mohammad Azam, Fang Tu, and Krishna R. Pattipati,
Condition- based predictive maintenance of industrial
power systems, Proc. SPIE 4733, Component and
Systems Diagnostics, Prognostics, and Health
Management II, 16 July 2002.