Pignaton,  Carla  Schwengber ten Caten, and  Alex  de 
Lima  Teodoro  da  Penha,V2023.  Predictive 
Maintenance  in  the  Military  Domain:  A  Systematic 
Review of the Literature, ACM Comput. Surv. 55, 13s, 
Article 267 (December 2023), 30 pages, 2023. 
Zhang,  Bin,  and  Yung  C.  Shin,  A  probabilistic  neural 
network for uncertainty prediction with applications to 
manufacturing  process  monitoring,  Applied Soft 
Computing 124 (2022): 108995,2022. 
Seyed Mostafa  Hallaji, Yihai  Fang, Brandon  K. Winfrey, 
Predictive  maintenance  of  pumps  in  civil 
infrastructure:  State-of-the-art,  challenges  and  future 
directions, Automation in Construction, Volume 134, 
104049, ISSN 0926-5805,2022. 
Nashed,  Mohamad  Shadi,  Renno,  Jamil,  Mohamed,  M. 
Shadi,  Mod-  elling  fatigue  uncertainty  by  means  of 
nonconstant  variance  neural  networks,  Fatigue & 
Fracture of Engineering Materials & Structures, 45, 
9, ISSN - 8756-758X, 2468, 24802022, 2022. 
Drakaki, Maria & Karnavas, Yannis & Tziafettas, Ioannis 
&  Linardos,  Vasilis  &  Tzionas,  Panagiotis,Machine 
Learning and Deep Learning Based Methods Toward 
Industry  4.0  Predictive  Maintenance  in  Induction 
Motors: State of the Art Survey. Journal of Industrial 
Engineering and Management, 2022. 
Kane,  Archit  P.,  et  al.Predictive  maintenance  using 
machine  learning.”  arXiv preprint arrive: 2205. 
09402, 2022. 
Zdravkovic´, M., Panetto, H., &  Weichhart,  G.  2021, AI-
enabled  Enterprise  Information  Systems  for 
Manufacturing,  Enterprise Information Systems, 
16(4), 668–720, 2021. 
H. Zhu, S. A. Z. Ahmed, M. A. Alfakih, M. A. Abdelbaky, 
A. R. Sayed and M. A. A. Saif, Photovoltaic Failure 
Diagnosis  Using  Sequential  Probabilistic  Neural 
Network Model, in IEEE Access, vol. 8, pp. 220507-
220522, 2020. 
Tyagi,  Vinayak,  et  al.  A  survey:  Predictive  maintenance 
modeling  using  machine  learning  techniques, 
Proceedings of the International Conference on 
Innovative Computing & Communications 
(ICICC),2020. 
Dalzochio, Jovani & Kunst, Rafael & Pignaton de Freitas, 
Edison & Binotto, Alecio & Sanyal, Srijnan & Favilla, 
Jose  &  Barbosa,  Jorge,  2020  Machine  learning  and 
reasoning for predictive maintenance in Industry 4.0: 
Current status and challenges. Computers in Industry, 
2020. 
Li,  A.;  Yang,  X.;  Dong,  H.;  Xie,  Z.;  Yang,  C.  Machine 
Learning-Based  Sensor  Data  Modeling  Methods  for 
Power  Transformer  PHM.  Sensors 2018, 18, 4430, 
2018. 
Chuan-Jun  Su,  Shi-Feng  Huang,  Real-time  big  data 
analytics for hard  disk drive predictive maintenance, 
Computers & Electrical Engineering, Volume 71, 
2018, Pages 93-101, ISSN 0045-7906, 2018. 
S. Mishra et al., Classification of power system faults using 
voltage  Concordia  pattern  feature  aided  PNN.  2016 
IEEE 6th International Conference on Power Systems 
(ICPS) (2016): 1-6, 2016. 
Yi J-H, Wang J, Wang G-G. Improved probabilistic neural 
networks with self-adaptive strategies for transformer 
fault  diagnosis  problem.  Advances in Mechanical 
Engineering. 2016;8(1),2016. 
Devendiran, S., and K. Manivannan, Vibration signal based 
multi-fault  diagnosis  of  gears  using  roughset 
integrated  PCA  and  neural  networks, Int. J. Mech. 
Mechatron. Eng 15.01,2015. 
Hameed,  Shameer  V.,  and  K.  M.  Shameer,  Proactive 
Condition  Monitoring  Systems  for  Power  Plants, 
International Journal of Scientific and Research 
Publications 3.11 (2013): 1-5,2013. 
Mellit, Adel & Drif, Mahmoud & Ali, Malek, 2010, EPNN-
based prediction of meteorological data for renewable 
energy  systems.  Revue des Energies Renouvelables. 
13. 25-47. 10. 54966 / jreen . v13 i1. 176 ,2010. 
Crupi,  Vincenzo,  Eugenio  Guglielmino,  and  G.  Milazzo, 
Neural-  network-based  system  for  novel  fault 
detection in rotating machinery, Journal of Vibration 
and Control 10.8 (2004): 1137-1150, 2004. 
Mohammad  Azam,  Fang  Tu,  and  Krishna  R.  Pattipati, 
Condition- based predictive maintenance of industrial 
power  systems,  Proc. SPIE 4733, Component and 
Systems Diagnostics, Prognostics, and Health 
Management II, 16 July 2002.