
system using ocsvm and pigeon inspired optimizer.
Applied Intelligence, 52(4):3527–3544.
Arregoces, P., Vergara, J., Guti
´
errez, S. A., and Botero,
J. F. (2022). Network-based intrusion detection: A
one-class classification approach. In NOMS 2022-
2022 IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 1–6. IEEE.
Astrid, M., Zaheer, M. Z., and Lee, S.-I. (2023). Pseu-
dobound: Limiting the anomaly reconstruction capa-
bility of one-class classifiers using pseudo anomalies.
Neurocomputing, 534:147–160.
Chaabi, M., Hamlich, M., and Garouani, M. (2023). Prod-
uct defect detection based on convolutional autoen-
coder and one-class classification. IAES International
Journal of Artificial Intelligence, 12(2):912.
Gangadhar, K. S. N. V. K., Kumar, B. A., Vivek, Y., and
Ravi, V. (2022). Chaotic variational auto encoder
based one class classifier for insurance fraud detec-
tion.
Gao, L., Zhang, L., Liu, C., and Wu, S. (2020). Handling
imbalanced medical image data: A deep-learning-
based one-class classification approach. Artificial in-
telligence in medicine, 108:101935.
Hasanin, T., Khoshgoftaar, T. M., Leevy, J. L., and Bauder,
R. A. (2019). Severely imbalanced big data chal-
lenges: investigating data sampling approaches. Jour-
nal of Big Data, 6(1):1–25.
Jewell, J. T., Khazaie, V. R., and Mohsenzadeh, Y. (2022).
One-class learned encoder-decoder network with ad-
versarial context masking for novelty detection. In
Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 3591–3601.
Jove, E., Aveleira-Mata, J., Alaiz-Moret
´
on, H., Casteleiro-
Roca, J.-L., Marcos del Blanco, D. Y., Zayas-Gato,
F., Quinti
´
an, H., and Calvo-Rolle, J. L. (2022). Intel-
ligent one-class classifiers for the development of an
intrusion detection system: the mqtt case study. Elec-
tronics, 11(3):422.
”Khan, S. S. and Madden, M. G. (”2010”). ”a survey of
recent trends in one class classification”. In ”Coyle,
L. and Freyne, J., editors, ”Artificial Intelligence and
Cognitive Science”, pages ”188–197”, ”Berlin, Hei-
delberg”. ”Springer Berlin Heidelberg”.
Kim, S.-M. and Sohn, J.-M. (2023). Vibration anomaly de-
tection of one-class classification using multi-column
autoencoder. Journal of The Korea Society of Com-
puter and Information, 28(2):9–17.
Lo, S.-Y., Oza, P., and Patel, V. M. (2022). Adversarially
robust one-class novelty detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
45(4):4167–4179.
Moya, M. M., Koch, M. W., and Hostetler, L. D. (1993).
One-class classifier networks for target recognition
applications. NASA STI/Recon Technical Report N,
93:24043.
Pang, J., Pu, X., and Li, C. (2022). A hybrid algo-
rithm incorporating vector quantization and one-class
support vector machine for industrial anomaly detec-
tion. IEEE Transactions on Industrial Informatics,
18(12):8786–8796.
Perera, P., Oza, P., and Patel, V. M. (2021). One-class classi-
fication: A survey. arXiv preprint arXiv:2101.03064.
Perez-Careta, E., Hern
´
andez-Far
´
ıas, D. I., Guzman-
Sepulveda, J. R., Cisneros, M. T., Cordoba-Fraga, T.,
Martinez Espinoza, J. C., and Guzman-Cabrera, R.
(2022). One-class classification for identifying covid-
19 in x-ray images. Programming and Computer Soft-
ware, 48(4):235–242.
Pulsipher, J. L., Coutinho, L. D., Soderstrom, T. A., and
Zavala, V. M. (2022). Safe-occ: A novelty detection
framework for convolutional neural network sensors
and its application in process control. Journal of Pro-
cess Control, 117:78–97.
Sarhan, M., Kulatilleke, G., Lo, W. W., Layeghy, S., and
Portmann, M. (2023). Doc-nad: A hybrid deep one-
class classifier for network anomaly detection. In
2023 IEEE/ACM 23rd International Symposium on
Cluster, Cloud and Internet Computing Workshops
(CCGridW), pages 1–7. IEEE.
Seliya, N., Abdollah Zadeh, A., and Khoshgoftaar, T. M.
(2021). A literature review on one-class classification
and its potential applications in big data. Journal of
Big Data, 8:1–31.
Sharma, R., Mashkaria, S., and Awate, S. P. (2022). A semi-
supervised generalized vae framework for abnormal-
ity detection using one-class classification. In Pro-
ceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 595–603.
Tang, Y.-X., Tang, Y.-B., Han, M., Xiao, J., and Summers,
R. M. (2019). Deep adversarial one-class learning for
normal and abnormal chest radiograph classification.
In Medical Imaging 2019: Computer-Aided Diagno-
sis, volume 10950, pages 305–311. SPIE.
Vivek, Y., Ravi, V., Mane, A. A., and Naidu, L. R. (2022).
Explainable artificial intelligence and causal inference
based atm fraud detection.
Vivek, Y., Vadlamani, D. R., and Radha Krishna, P. Feature
subset selection for big data via parallel chaotic bi-
nary differential evolution island model under apache
spark. Available at SSRN 4133444.
Wang, B., Wang, W., Meng, G., Meng, T., Song, B., Wang,
Y., Guo, Y., Qiao, Z., and Mao, Z. (2023a). Selective
feature bagging of one-class classifiers for novelty de-
tection in high-dimensional data. Engineering Appli-
cations of Artificial Intelligence, 120:105825.
Wang, R., Liu, C., Mou, X., Gao, K., Guo, X., Liu, P., Wo,
T., and Liu, X. (2023b). Deep contrastive one-class
time series anomaly detection. In Proceedings of the
2023 SIAM International Conference on Data Mining
(SDM), pages 694–702. SIAM.
Wei, Q., Ren, Y., Hou, R., Shi, B., Lo, J. Y., and Carin,
L. (2018). Anomaly detection for medical images
based on a one-class classification. In Medical Imag-
ing 2018: Computer-Aided Diagnosis, volume 10575,
pages 375–380. SPIE.
Xu, H., Wang, Y., Jian, S., Liao, Q., Wang, Y., and Pang, G.
(2022a). Calibrated one-class classification for unsu-
pervised time series anomaly detection. arXiv preprint
arXiv:2207.12201.
INCOFT 2025 - International Conference on Futuristic Technology
754