with better performance and scale complexity for
complex large data situations.
REFERENCES
Jain, A. K. (2010). Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8), 651–666.
https://doi.org/10.1016/j.patrec.2009.09.011
Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel K-
means: Spectral clustering and normalized cuts.
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
551–556. https://doi.org/10.1145/1014052.1014118
Wang, J., Song, J., & He, R. (2020). Robust weighted K-
means for clustering imbalanced data. IEEE
Transactions on Neural Networks and Learning
Systems, 31(6), 2001–2014.
https://doi.org/10.1109/TNNLS.2020.2965900
Aleem, A., Srivastava, R., Singh, A. K., & Gore, M. M.
(2009). GCLOD: A Clustering Algorithm for Improved
Intra-cluster Similarity and Efficient Local Outliers
Detection. In DMIN (pp. 524-530).
Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A
density-based algorithm for discovering clusters in
large spatial databases with noise. Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, 226–231.
Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in
data: An introduction to cluster analysis. Wiley.
https://doi.org/10.1002/9780470316801
Xu, R., & Wunsch, D. (2005). Survey of clustering
algorithms. IEEE Transactions on Neural Networks,
16(3), 645–678.
https://doi.org/10.1109/TNN.2005.845141
Xiong, H., Wu, J., & Chen, J. (2009). K-means clustering
versus validation measures: A data distribution
perspective. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 39(2), 318–331.
https://doi.org/10.1109/TSMCB.2008.2007638
Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An
efficient clustering algorithm for large databases.
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 73–84.
https://doi.org/10.1145/276304.276312
Bock, H. H. (1994). Clustering methods: A history of K-
means algorithms. Computational Statistics & Data
Analysis, 17(1), 1–17. https://doi.org/10.1016/0167-
9473(94)90180-5
Hinneburg, A., & Keim, D. A. (1999). Optimal grid-
clustering: Towards breaking the curse of
dimensionality in high-dimensional clustering. VLDB
Conference Proceedings, 506–517.
Aleem, A., Kumar, A., & Gore, M. M. (2019, March). A
study of manuscripts evolution to perfection. In
Proceedings of 2nd International Conference on
Advanced Computing and Software Engineering
(ICACSE).
MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. Proceedings
of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 281–297.
Bandyopadhyay, S., & Maulik, U. (2018). Genetic
algorithm-based clustering technique for large data sets.
Pattern Recognition Letters, 105, 220–231.
https://doi.org/10.1016/j.patrec.2017.09.003
Aggarwal, C. C., & Reddy, C. K. (2019). Data Clustering:
Algorithms and Applications. Chapman and Hall/CRC.
https://doi.org/10.1201/9781315373515
Li, X., Liu, H., & Wang, Y. (2020). A robust density peaks
clustering algorithm for high-dimensional data.
Knowledge-Based Systems, 187, 104812.
https://doi.org/10.1016/j.knosys.2019.104812
Shao, Y., Zhang, W., & Li, X. (2020). An adaptive K-means
clustering algorithm based on entropy and silhouette
coefficient. Cluster Computing, 23(3), 1809–1821.
https://doi.org/10.1007/s10586-020-03068-4
Ma, Z., Yu, H., & Zhang, Z. (2021). Enhanced K-means
clustering with intelligent parameter estimation.
Information Sciences, 551, 220–233.
https://doi.org/10.1016/j.ins.2020.11.030
Liu, B., Wang, Z., & Zuo, Y. (2021). Hybrid clustering
methods for imbalanced datasets: A review. ACM
Computing Surveys, 54(3), 1–36.
https://doi.org/10.1145/3430645
Huang, S., Jin, Z., & Wang, Q. (2022). A semi-supervised
clustering approach with active learning and feature
weighting. IEEE Transactions on Knowledge and Data
Engineering
, 34(5), 2079–2092.
https://doi.org/10.1109/TKDE.2021.3076654
Qian, X., Wang, Y., & Chen, L. (2022). Fuzzy clustering
algorithms for time-series data: A comparative study.
Knowledge-Based Systems, 245, 108650.
https://doi.org/10.1016/j.knosys.2022.108650
Singh, D., & Arora, N. (2023). Clustering algorithms for
big data: A survey of challenges and solutions. Big Data
Research, 31, 100324.
https://doi.org/10.1016/j.bdr.2023.100324
Li, J., Chen, M., & Xie, Y. (2023). Optimizing spectral
clustering for large-scale datasets using neural
networks. Neurocomputing, 540, 228–238.
https://doi.org/10.1016/j.neucom.2023.03.082
Wang, H., Zhang, X., & Tang, Z. (2024). Hierarchical
clustering with adaptive linkage metrics. Expert
Systems with Applications, 220, 119664.
https://doi.org/10.1016/j.eswa.2023.119664
Kumar, R., Singh, M., & Sharma, P. (2024). Graph-based
clustering techniques for high-dimensional data: Trends
and future directions. Journal of Big Data, 11(1), 55.
https://doi.org/10.1186/s40537-024-00658-9
Yuan, L., Wang, C., & Li, D. (2024). Efficient clustering of
multi-view data using deep learning representations.
IEEE Transactions on Cybernetics, 54(2), 450–465.
https://doi.org/10.1109/TCYB.2023.3303940