Advances in Social Networks Analysis and Mining
(ASONAM) (pp. 151-158). IEEE.
https://doi.org/10.1109/ASONAM49781.2020.938129
4
Bischke, B., Helber, P., Schulze, C., Srinivasan, V., Dengel,
A., & Borth, D. (2017, September). The Multimedia
Satellite Task at MediaEval 2017. In MediaEval.
Borji, A. (2022). Pros and cons of GAN evaluation
measures: New developments. Computer Vision and
Image Understanding, 215, 103329.
https://doi.org/10.1016/j.cviu.2021.103329
Dong, Z. S., Meng, L., Christenson, L., Fulton, L. (2021).
Social media information sharing for natural disaster
response. Natural hazards, 107(3), 2077-2104.
https://doi.org/10.1007/s11069-021-04528-9
Hong, Z., Zhong, H., Pan, H., Liu, J., Zhou, R., Zhang, Y.,
... Zhong, C. (2022). Classification of building damage
using a novel convolutional neural network based on
post-disaster aerial images. Sensors, 22(15), 5920.
https://doi.org/10.3390/s22155920
Hossain, E., Hoque, M. M., Hoque, E., Islam, M. S. (2022).
A deep attentive multimodal learning approach for
disaster identification from social media posts. IEEE
Access, 10, 46538-46551.
https://doi.org/10.1109/ACCESS.2022.3170897
Johnson, J. M., Khoshgoftaar, T. M. (2019). Survey on deep
learning with class imbalance. Journal of big data, 6(1),
1-54. https://doi.org/10.1186/s40537-019-0192-5
Lagerstrom, R., Arzhaeva, Y., Szul, P., Obst, O., Power, R.,
Robinson, B., Bednarz, T. (2016). Image classification
to support emergency situation awareness. Frontiers in
Robotics and AI, 3, 54.
https://doi.org/10.3389/frobt.2016.00054
Liang, T., Lin, G., Wan, M., Li, T., Ma, G., Lv, F. (2022).
Expanding large pre-trained unimodal models with
multimodal information injection for image-text
multimodal classification. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition (pp. 15492-15501).
https://doi.org/10.1109/CVPR52688.2022.01505
Ma, F., Li, Y., Ni, S., Huang, S. L., Zhang, L. (2022). Data
augmentation for audio-visual emotion recognition
with an efficient multimodal conditional GAN. Applied
Sciences, 12(1), 527.
https://doi.org/10.3390/app12010527
Olteanu, A., Castillo, C., Diaz, F., Vieweg, S. (2014, May).
Crisislex: A lexicon for collecting and filtering
microblogged communications in crises. In
Proceedings of the international AAAI conference on
web and social media (Vol. 8, No. 1, pp. 376-385).
https://doi.org/10.1609/icwsm.v8i1.14538
Rui, X., Cao, Y., Yuan, X., Kang, Y., Song, W. (2021).
Disastergan: Generative adversarial networks for
remote sensing disaster image generation. Remote
Sensing, 13(21), 4284.
https://doi.org/10.3390/rs13214284
Shahbazi, M., Huang, Z., Paudel, D. P., Chhatkuli, A., &
Van Gool, L. (2021). Efficient conditional gan transfer
with knowledge propagation across classes. In
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 12167-
12176).
Shorten, C., Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal of
big data, 6(1), 1-48. https://doi.org/10.1186/s40537-
019-0197-0
Singh, K., Yadav, M., Singh, Y., Malik, P. S., Siwach, V.,
Khurana, D., ... Elngar, A. A. (2025). IoT Networks:
Integrated Learning for Privacy-Preserving Machine
Learning. In Artificial Intelligence Using Federated
Learning (pp. 250-275). CRC Press.
http://dx.doi.org/10.1201/9781003482000-13
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. (2017,
February). Inception-v4, inception-resnet and the
impact of residual connections on learning. In
Proceedings of the AAAI conference on artificial
intelligence (Vol. 31, No. 1).
https://doi.org/10.1609/aaai.v31i1.11231
Valdez, D. B., & Godmalin, R. A. G. (2021, December). A
deep learning approach of recognizing natural disasters
on images using convolutional neural network and
transfer learning. In Proceedings of the international
conference on artificial intelligence and its
applications (pp. 1-7).
https://doi.org/10.1145/3487923.3487927
Yang, W., Zhang, X., Luo, P. (2021). Transferability of
convolutional neural network models for identifying
damaged buildings due to earthquake. Remote Sensing,
13(3), 504. https://doi.org/10.3390/rs13030504
Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y.
(2019). Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of
the IEEE/CVF international conference on computer
vision (pp. 6023-6032).
http://dx.doi.org/10.48550/arXiv.1905.04899