
detection system for intra-vehicular networks. IEEE
Transactions on Intelligent Transportation Systems,
23(11):22596–22606.
Ajjaj, S., el Houssaini, S., Mustapha, H., and Houssaini, M.-
A. (2022). A new multivariate approach for real time
detection of routing security attacks in vanets. Infor-
mation, 13:282.
Alladi, T., Gera, B., Agrawal, A., Chamola, V., and Yu, F. R.
(2021). Deepadv: A deep neural network framework
for anomaly detection in vanets. IEEE Transactions
on Vehicular Technology, 70(11):12013–12023.
Alsarhan, A., Alauthman, M., Alshdaifat, E., Al-Ghuwairi,
A.-R., and Al-Dubai, A. (2021). Machine learning-
driven optimization for svm-based intrusion detection
system in vehicular ad hoc networks. Journal of Am-
bient Intelligence and Humanized Computing, 14.
Anjali, T., Goyal, R., and G.N, B. (2024). Prevention of at-
tacks in vehicular adhoc networks. In 2024 IEEE In-
ternational Students’ Conference on Electrical, Elec-
tronics and Computer Science (SCEECS), pages 1–8.
Aoudni, Y., Shabaz, D. M., Agrawal, A., Yasmin, G.,
Alomari, E. S., Al-Khafaji, H. M. R., Dansana, D.,
and Maaliw III, R. (2024). Vanet network traf-
fic anomaly detection using gru-based deep learning
model. IEEE Transactions on Consumer Electronics,
70:4548–4555.
Baharlouei, H., Makanju, A., and Zincir-Heywood, N.
(2024). Advent: Attack/anomaly detection in vanets.
Bangui, H., Ge, M., and Buhnova, B. (2021). A hybrid data-
driven model for intrusion detection in vanet. Proce-
dia Computer Science, 184:516–523. The 12th Inter-
national Conference on Ambient Systems, Networks
and Technologies (ANT) / The 4th International Con-
ference on Emerging Data and Industry 4.0 (EDI40) /
Affiliated Workshops.
Bayan, S., Mohammad, U., and Al Mohammad, A. (2024).
Position falsification attack detection in inter-vehicle
networks using deep learning. pages 621–626.
Baza, M., Nabil, M., Mahmoud, M. M. E. A., Bewermeier,
N., Fidan, K., Alasmary, W., and Abdallah, M. (2022).
Detecting sybil attacks using proofs of work and loca-
tion in vanets. IEEE Transactions on Dependable and
Secure Computing, 19(1):39–53.
Behravan, M., Zhang, N., Jaekel, A., and Kneppers, M.
(2022). Intrusion detection systems based on stack-
ing ensemble learning in vanet. In 2022 5th Inter-
national Conference on Communications, Signal Pro-
cessing, and their Applications (ICCSPA), pages 1–7.
Ercan, S., Ayaida, M., and Messai, N. (2022). Misbehav-
ior detection for position falsification attacks in vanets
using machine learning. IEEE Access, 10:1893–1904.
Garg, S., Kaur, K., Kaddoum, G., Gagnon, F., Kumar, N.,
and Han, Z. (2019). Sec-iov: A multi-stage anomaly
detection scheme for internet of vehicles. pages 37–
42.
Goncalves, F., Macedo, J., and Santos, A. (2021). An intel-
ligent hierarchical security framework for vanets. In-
formation, 12:455.
Guerrero-Ib
´
a
˜
nez, J. A., Flores-Cort
´
es, C., and Zeadally, S.
(2013). Vehicular Ad-hoc Networks (VANETs): Ar-
chitecture, Protocols and Applications, pages 49–70.
Springer London, London.
Gyawali, S., Qian, Y., and Hu, R. Q. (2020). Machine learn-
ing and reputation based misbehavior detection in ve-
hicular communication networks. IEEE Transactions
on Vehicular Technology, 69(8):8871–8885.
He, A. (2024). Understanding on-board units (obu) in vehi-
cle telematics. Medium.
Kaur, G., Khurana, M., and Kaur, A. (2022). Gray hole
attack detection and prevention system in vehicular
adhoc network (vanet). In 2022 3rd International
Conference on Computing, Analytics and Networks
(ICAN), pages 1–6.
Kuchaki Rafsanjani, M., Fatemidokht, H., Balas, V. E., and
Batth, R. S. (2021). An anomaly detection system
based on clustering and fuzzy set theory in vanets.
In Balas, V. E., Jain, L. C., Balas, M. M., and Shah-
bazova, S. N., editors, Soft Computing Applications,
pages 399–407, Cham. Springer International Pub-
lishing.
Kumar, N. and Chilamkurti, N. (2014). Collaborative trust
aware intelligent intrusion detection in vanets. Com-
puters & Electrical Engineering, 40.
Liu, B., Liu, X., Gao, S., Yu, B., and Zuo, P. (2023). Fed-
erated learning for vanet based on homomorphic en-
cryption. In 2023 Cross Strait Radio Science and
Wireless Technology Conference (CSRSWTC), pages
1–3. IEEE.
Liu, X. (2022). Misbehavior detection based on deep learn-
ing for vanets. In 2022 International Conference on
Networks, Communications and Information Technol-
ogy (CNCIT), pages 122–128.
Lyamin, N., Kleyko, D., Delooz, Q., and Vinel, A.
(2018). Ai-based malicious network traffic detection
in vanets. IEEE Network, 32(6):15–21.
Nie, L., Wu, Y., Wang, H., and li, y. (2019). Anomaly de-
tection based on spatio-temporal and sparse features
of network traffic in vanets. IEEE Access, 7:177954–
177964.
Nissar, N., Naja, N., and Jamali, A. (2024). Securing
vanets: Multi-objective intrusion detection with varia-
tional autoencoders. IEEE Transactions on Consumer
Electronics, 70(1):3867–3874.
Poongodi, M., Hamdi, M., Sharma, A., Ma, M., and Singh,
P. K. (2019). Ddos detection mechanism using trust-
based evaluation system in vanet. IEEE Access,
7:183532–183544.
S, D., Shrivastava, R. R., Narang, P., Alladi, T., and Yu,
F. R. (2024). Vadgan: An unsupervised gan frame-
work for enhanced anomaly detection in connected
and autonomous vehicles. IEEE Transactions on Ve-
hicular Technology, 73(9):12458–12467.
Shahid, M. A. and Jaekel, A. (2023). Hybrid approach to
detect position forgery attacks in connected vehicles.
In 2023 14th International Conference on Network of
the Future (NoF), pages 47–51.
Shakir, A., Islam, M., Mandeep, J., Islam, M., Abdul-
lah, N., Taher, Y., Abdullahi, O., and Soliman, M.
(2024). Systematic review of data exchange for road
side unit in a vehicular ad hoc network: coherent
INCOFT 2025 - International Conference on Futuristic Technology
654