
tem of equations at the event time for different com-
binations of binary variables and checking conditions
based on the function values and their total derivatives
to determine the system’s behavior.
To address the combinatorial complexity arising
from the binary variables, it is proposed to use spar-
sity pattern analysis to identify sub-sets and sub-
problems within the system, which can be solved
more efficiently. The simulation results of the exam-
ple show the applicability of the method. The sys-
tem’s behavior at discontinuity surfaces can be seen
and reveal a limit cycle.
REFERENCES
Baharev, A., Neumaier, A., and Schichl, H. (2019). A
manifold-based approach to sparse global constraint
satisfaction problems. Journal of Global Optimiza-
tion, 75(4):949–971.
Benzaouia, A. (2012). Introduction to switched systems. In
Saturated Switching Systems, pages 77–94. Springer.
Calvo, M., Montijano, J., and R
´
andez, L. (2016). Algo-
rithm 968: Disode45: A matlab runge-kutta solver for
piecewise smooth ivps of filippov type. ACM Trans-
actions on Mathematical Software, 43:1–14.
Dieci, L. and Lopez, L. (2011). Fundamental matrix solu-
tions of piecewise smooth differential systems. Math.
Comput. Simul., 81:932–953.
Dulmage, A. L. and Mendelsohn, N. S. (1958). Coverings
of bipartite graphs. Canadian Journal of Mathematics,
10:517–534.
Engels, M., Lichtenberg, G., and Knorn, S. (2024). An
approach to parameter identification for boolean-
structured multilinear time-invariant models*. In 2024
European Control Conference (ECC), pages 2077–
2082.
Fritzson, P. and Engelson, V. (1998). Modelica—a uni-
fied object-oriented language for system modeling
and simulation. In ECOOP’98—object-oriented pro-
gramming: 12th European conference Brussels, Bel-
gium, July 20–24, 1998 proceedings 12, pages 67–90.
Springer.
J
¨
ores, N., Kaufmann, C., Schnelle, L., Y
´
a
˜
nez, C., Pangalos,
G., and Lichtenberg, G. (2022). Reduced cp represen-
tation of multilinear models. Proceedings of the 12th
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications.
Kaufmann, C., Garcia, D. C., Lichtenberg, G., Panga-
los, G., and Y
´
a
˜
nez, C. C. (2023). Efficient lin-
earization of explicit multilinear systems using nor-
malized decomposed tensors. IFAC-PapersOnLine,
56(2):7312–7317.
Lang, S. (2002). Algebra. Graduate Texts in Mathematics,
volume 211, chapter Matrices and Linear Maps §4.
Determinants, page 511. Springer New York.
Lichtenberg, G. et al. (2022). Implicit multilinear modeling.
at - Automatisierungstechnik, 70(1):13–30.
Lichtenberg, G., Uhlenberg, E., Warnecke, T., Cateriano,
C., Engels, M., Samaniego, L., Schnelle, L., and
Kaufmann, C. (2024). MTI-Toolbox. http://mti.
systems.
Luxa, A. et al. (2022). Multilinear modeling and simula-
tion of a multi-stack PEM electrolyzer with degrada-
tion for control concept comparison. Proceedings of
the 12th International Conference on Simulation and
Modeling Methodologies, Technologies and Applica-
tions.
Mehrmann, V. and Wunderlich, L. (2009). Hybrid sys-
tems of differential-algebraic equations - analysis and
numerical solution. Journal of Process Control,
19(8):1218–1228. Special Section on Hybrid Sys-
tems: Modeling, Simulation and Optimization.
Pangalos, G., Eichler, A., and Lichtenberg, G. (2014). Hy-
brid multilinear modeling and applications. Advances
in Intelligent Systems and Computing, page 71–85.
Piiroinen, P. and Kuznetsov, Y. (2008). An event-driven
method to simulate filippov systems with accurate
computing of sliding motions. ACM Transactions on
Mathematical Software, 34.
Pinar, A. and Heath, M. T. (1999). Improving performance
of sparse matrix-vector multiplication. Proceedings of
the 1999 ACM/IEEE conference on Supercomputing.
Pothen, A. and Fan, C.-J. (1990). Computing the block tri-
angular form of a sparse matrix. ACM Trans. Math.
Softw., 16(4):303–324.
Samaniego, L., Uhlenberg, E., Kaufmann, C., Engels, M.,
Pangalos, G., Cateriano Y
´
a
˜
nez, C., and Lichtenberg,
G. (2024). An approach to multi-energy network mod-
eling by multilinear models. pages 1522–1527.
Sanz, V., Urquia, A., and Casella, F. (2014). Improving
efficiency of hybrid system simulation in Modelica.
volume 2014.
Shampine, L. (2002). Solving 0=f(t,y(t),y ’ (t)) in matlab.
Journal of Numerical Mathematics, 10.
Vassilevska, V. and Pinar, A. (2004). Finding nonoverlap-
ping dense blocks of a sparse matrix. Lawrence Berke-
ley National Laboratory.
Warnecke, T. and Lichtenberg, G. (2024a). Hybrid implicit
multilinear modeling of complex hvac systems. In
Wagner, G., Werner, F., and De Rango, F., editors,
Simulation and Modeling Methodologies, Technolo-
gies and Applications, pages 79–104, Cham. Springer
Nature Switzerland.
Warnecke, T. and Lichtenberg, G. (2024b). Hybrid im-
plicit multilinear simulation using difference algebraic
equations reordering by sparsity patterns*. In Interna-
tional Conference on Control, Decision and Informa-
tion Technologies 2024, 2024 10th International Con-
ference on Control, Decision and Information Tech-
nologies (CoDIT), pages 2578–2583.
SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
356