Conf. on Knowledge Discovery and Data Mining, 785-
794.
Clark, J., Radford, A. & Wu, J. (2019). https://github.com/
openai/gpt-2-output-dataset/blob/master/detection.md
Crosier, K. (1997). Corporate Reputations: Strategies for
Developing the Corporate Brand. European J. of
Marketing, 31(5-6). Corporate Reputations: Strategies
for Developing the Corporate Brand. - Document - Gale
Academic OneFile
Davenport, T.H., & Ronanki, R. (2018). Artificial
Intelligence for the Real World. Harvard Business
Review, 96(1), 108-116. 3 Things AI Can Already Do for
Your Company (hbr.org)
Dellarocas, C., Zhang, X., & Awad, N.F. (2007). Exploring
the value of online product reviews in forecasting sales:
The case of motion pictures. J. of Interactive Marketing,
21(4), 23-45.
Desaire, H., Chua, A.E., Isom, M., Jarosova, R., & Hua, D.
(2023). Distinguishing academic science writing from
humans or ChatGPT with over 99% accuracy using off-
the-shelf machine learning tools. Cell Reports Physical
Science 4, 101426.
Dheda, G. (2023, June). When Was ChatGPT Released?
https://openaimaster.com/when-was-chatgpt-released
Dwidienawati, D., Tjahjana, D., Abdinagoro, S., Gandasari,
D., & Munawaroh. (2020, Nov.). Customer review or
influencer endorsement: which one influences purchase
intention more? Heliyon, 6(11).
Elmurngi, E., & Gherbi, A. (2018). Detecting Fake Reviews
through Sentiment Analysis Using Machine Learning
Techniques. DATA ANALYTICS 2017: The 6th Int.
Conf. on Data Analytics
FakeSpot. (n.d.). FakeSpot - Use AI to detect fake reviews
and scams. https://www.fakespot.com/
Feng, L., Jansche, M., Huenerfauth, M., & Elhadad, N.
(2010). A Comparison of Features for Automatic
Readability Assessment. COLING 2010, 23rd Int.
Conf. on Computational Linguistics, Beijing.
Fu, Z., Lam, W., So, A. M.-C., & Shi, B. (2021, March 22).
A Theoretical Analysis of the Repetition Problem in
Text Generation. https://arxiv.org/pdf/2012.14660.pdf
Gebhart, J. (1996). Reputation: Realizing Value from the
Corporate Image. Sloan Management Review,
Cambridge, 37(2), 116.
Gehrmann, S., Strobelt, H., & Alexander, R.M. (2019).
GLTR: Statistical Detection and Visualization of
Generated Text. Proc. of the 57th Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, 111–116.
Geiger, B. C. (2021). On Information Plane Analyses of
Neural Network Classifiers—A Review. IEEE Trans.
on Neural Networks and Learning Systems, 33(2),
7039-7051.
He, S., Hollenbeck, B., & Proserpio, D. (2022). The Market
for Fake Reviews. Marketing Science, 41(5), 896-921.
Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y.
(2020, February 14). The Curious Case of Neural Text
Degeneration. The Int. Conf. on Learning
Representations (ICLR). https://arxiv.org/pdf/1904.
09751.pdf
huggingface. (n.d.). Perplexity of fixed-length models.
https://huggingface.co/docs/transformers/perplexity
Ippolito, D., Duckworth, D., Callison-Burch, C., & Eck, D.
(2020). Automatic Detection of Generated Text is
Easiest when Humans are Fooled. Proc. of the 58th
Annual Meeting of the Association for Computational
Linguistics, 1808–1822.
Jiang, S., Wolf, T., Monz, C., & Rijke, M. d. (2020, April
9). TLDR: Token Loss Dynamic Reweighting for
Reducing Repetitive Utterance Generation.
https://arxiv.org/pdf/2003.11963.pdf
Jindal, N., & Liu, B. (2008). Opinion spam and analysis.
WSDM '08: Proc. of the 2008 Int. Conf. on Web Search
and Data Mining. New York: ACM.
https://dl.acm.org/doi/abs/10.1145/1341531.1341560
Khalifah, S. (2021, September 16). The Truth Behind the
Stars. https://www.fakespot.com/post/the-truth-behind-
the-stars
Killian, G., & McManus, K. (2015). A marketing
communications approach for the digital era:
Managerial guidelines for social media integration.
Business Horizons, 58(5), 539-549.
Koppel, M., Argamon, S., & Shimoni, A.R. (2022).
Automatically Categorizing Written Texts by Author
Gender. Literary and Linguistic Computing, 401-412.
Kouzis-Loukas, D. (2016). Learning Scrapy. Packt
Publishing Ltd.
Lee, M., Song, Y., Li, L., Lee, K., & Yang, S.-B. (2022).
Detecting fake reviews with supervised machine
learning algorithms. Service Industries J., 1101-1121.
Leskovec, J., & McAuley, J. (2013). Hidden Factors and
Hidden Topics: Understanding Rating Dimensions with
Review Text. RecSys. https://snap.stanford.edu/
data/web-Amazon.html
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M.,
Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer,
L. (2020, October 29). BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension. Proc. of
the 58th Annual Meeting of the Association for
Computational Linguistics, 7871-7880.
Libai, B., Bart, Y., Gensler, S., Hofacker, C.F., Kaplan, A.,
Kötterheinrich, K., & Kroll, E.B. (2022). Brave New
World? On AI and the Management of Customer
Relationships. J. of Interact. Marketing, 51(1), 44-56.
Mohawesh, R., Xu, S., Tran, S.N., Ollington, R., &
Springer, M. (2021, April). Fake Reviews Detection: A
Survey. IEEE Access, 9, 65771-65802.
Maarten, G. (2022). BERTopic: Neural topic modeling with
a class-based TF-IDF procedure. https://arxiv.org/abs/
2203.05794
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard,
S.J., & McClosky, D. (2014). The Stanford CoreNLP
Natural Language Processing Toolkit. Proc. of 52nd
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 55-60, Baltimore.
Oh, S. (2022). Predictive case-based feature importance and
interaction. Information Sciences, 155-176.
Ott, M., Choi, Y., Cardie, C., & Hancock, J.T. (2011).
Finding Deceptive Opinion Spam by Any Stretch of the