
Table 1: Comparison of the implemented similarity search algorithms.
Qiskit Qrisp
Descriptor #Qubits CX Depth #Qubits CX Depth
64 7 250 961 319
128 8 506 2241 435
256 9 1018 5121 569
512 10 2042 11521 721
Table 2: Comparison: Spearman rank correlation over 100 512-bit descriptors depending on number of shots.
Qiskit Qrisp
#Shots Avg Min Max Avg Min Max
10 0.21 -0.07 0.51 1.0 1.0 1.0
100 0.51 0.28 0.69 1.0 1.0 1.0
500 0.80 0.66 0.90 1.0 1.0 1.0
1000 0.88 0.77 0.94 1.0 1.0 1.0
5000 0.97 0.93 0.99 1.0 1.0 1.0
10000 0.98 0.96 0.99 1.0 1.0 1.0
100000 1.00 0.99 1.00 1.0 1.0 1.0
REFERENCES
Adnan, S. M., Irtaza, A., Aziz, S., Ullah, M. O., Javed, A.,
and Mahmood, M. T. (2018). Fall detection through
acoustic local ternary patterns. Applied Acoustics,
140:296–300.
AI, Q. (2024a). Our quantum computing journey. https:
//quantumai.google/learn/map.
AI, Q. (2024b). Willow Spec Sheet. https://quantumai.go
ogle/static/site-assets/downloads/willow-spec-sheet
.pdf.
Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P.,
Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and
Weinfurter, H. (1995). Elementary gates for quantum
computation. Physical Review A, 52(5):3457–3467.
Publisher: American Physical Society.
Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T.,
Strecha, C., and Fua, P. (2011). Brief: Computing
a local binary descriptor very fast. IEEE transac-
tions on pattern analysis and machine intelligence,
34(7):1281–1298.
Chagneau, A., Massaoudi, Y., Derbali, I., and Yahiaoui,
L. (2024). Quantum algorithm for bioinformatics to
compute the similarity between proteins. IET Quan-
tum Communication.
Chia, N.-H., Chung, K.-M., and Lai, C.-Y. (2023). On the
Need for Large Quantum Depth. J. ACM, 70(1):6:1–
6:38.
Duan, L.-Y., Lin, J., Chen, J., Huang, T., and Gao, W.
(2014). Compact descriptors for visual search. IEEE
MultiMedia, 21(3):30–40.
FOKUS, F. (2024a). Eclipse Qrisp. https://www.qrisp.eu/.
FOKUS, F. (2024b). Fraunhofer FOKUS | WIR VERNET-
ZEN ALLES. https://www.fokus.fraunhofer.de/.
F
¨
urntratt, H., Schnabl, P., Krebs, F., Unterberger, R., and
Zeiner, H. (2024). Towards Higher Abstraction Levels
in Quantum Computing. In Service-Oriented Comput-
ing – ICSOC 2023 Workshops, pages 162–173, Singa-
pore. Springer Nature.
Gao, N., Wilson, M., Vandal, T., Vinci, W., Nemani, R.,
and Rieffel, E. (2020). High-dimensional similar-
ity search with quantum-assisted variational autoen-
coder. In Proceedings of the 26th ACM SIGKDD inter-
national conference on knowledge discovery & data
mining, pages 956–964.
Gao, Y., Qiao, Y., Li, Z., and Xu, C. (2013). Ltd: lo-
cal ternary descriptor for image matching. In 2013
IEEE International Conference on Information and
Automation (ICIA), pages 1375–1380. IEEE.
Greenberger, D., Hentschel, K., and Weinert, F., editors
(2009). Compendium of Quantum Physics. Springer,
Berlin, Heidelberg.
Gu, A., Lowe, A., Dub, P. A., Coles, P. J., and Arrasmith, A.
(2021). Adaptive shot allocation for fast convergence
in variational quantum algorithms. arXiv preprint
arXiv:2108.10434.
IBM (2024). Quantum roadmap. https://www.ibm.com/ro
admaps/quantum/www.ibm.com/roadmaps/quantum.
ISO/IEC15938 (2019). ISO/IEC 15938-15:2019 Informa-
tion technology-—-Multimedia content description
interface—Part 15: Compact descriptors for video
analysis.
Khan, M. and Miranskyy, A. (2021). String comparison on
a quantum computer using hamming distance. arXiv
preprint arXiv:2106.16173.
Laboratory, L. L. N. (2025). Using El Capitan Systems:
Hardware Overview | HPC @ LLNL. https://hpc.llnl
.gov/documentation/user-guides/using-el-capitan-sys
tems/hardware-overview.
Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
Brisk: Binary robust invariant scalable keypoints. In
Exploring Image Search on Quantum Computing Systems
77