
for robot framework. In Hemanth, J., Pelusi, D., and
Chen, J. I.-Z., editors, Intelligent Cyber Physical Sys-
tems and Internet of Things, volume 3 of Engineer-
ing Cyber-Physical Systems and Critical Infrastruc-
tures, pages 577–586. Springer International Publish-
ing, Cham.
Aryai, V., Mahdavi, N., West, S., and Henze, G. (2023).
An automated data-driven platform for buildings sim-
ulation. In Proceedings of the 10th ACM International
Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, pages 61–68, New York,
NY, USA. ACM.
Bavishi, R., Laddad, S., Yoshida, H., Prasad, M. R., and
Sen, K. (2021). Vizsmith: Automated visualiza-
tion synthesis by mining data-science notebooks. In
IEEE/ACM, editor, 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 129–141. IEEE.
Bilal, M., Ali, G., Iqbal, M. W., Anwar, M., Malik, M. S. A.,
and Kadir, R. A. (2022). Auto-prep: Efficient and au-
tomated data preprocessing pipeline. IEEE Access,
10:107764–107784.
Boina, R., Achanta, A., and Mandvikar, S. (2023). Integrat-
ing data engineering with intelligent process automa-
tion for business efficiency. International Journal of
Science and Research (IJSR), 12(11):1736–1740.
Brauner, S., Murawski, M., and Bick, M. (2025). The devel-
opment of a competence framework for artificial intel-
ligence professionals using probabilistic topic mod-
elling. Journal of Enterprise Information Manage-
ment, 38(1):197–218.
Cuadrado-Gallego, J. J. and Demchenko, Y., editors (2020).
The Data Science Framework: A View from the EDI-
SON Project. Springer eBook Collection. Springer
International Publishing and Imprint Springer, Cham,
1st ed. 2020 edition.
Davenport, T. H., Mittal, N., and Saif, I. (2020). What sep-
arates analytical leaders from laggards? MIT Sloan
management review.
Demchenko, Y., Belloum, A., et al. (2022). Data Science
Competence Framework (CF-DS). EDISON Commu-
nity Initiative.
Demchenko, Y. and Jos
´
e, C. G. J. (2021). Edison data sci-
ence framework (edsf): addressing demand for data
science and analytics competences for the data driven
digital economy. In IEEE, editor, IEEE Global En-
gineering Education Conference (EDUCON), pages
1682–1687.
Elshawi, R., Maher, M., and Sakr, S. (2019). Automated
machine learning: State-of-the-art and open chal-
lenges.
European Commission (2017). Education for data intensive
science to open new science frontiers.
European Committee for Standardization (2014). European
e-Competence Framework.
Galhotra, S. and Khurana, U. (2022). Automated relational
data explanation using external semantic knowledge.
Proceedings of the VLDB Endowment, 15(12):3562–
3565.
G
¨
okay, G. T., Nazlıel, K., S¸ener, U., G
¨
okalp, E., G
¨
okalp,
M. O., Genc¸al, N., Da
˘
gdas¸, G., and Eren, P. E. (2023).
What drives success in data science projects: A taxon-
omy of antecedents. In Garc
´
ıa M
´
arquez, F. P., Jamil,
A., Eken, S., and Hameed, A. A., editors, Computa-
tional Intelligence, Data Analytics and Applications,
volume 643 of Lecture Notes in Networks and Sys-
tems, pages 448–462. Springer International Publish-
ing, Cham.
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., and Tur-
owski, K. (2022). Toward a lifecycle for data science:
A literature review of data science process models.
Pacific Asia Conference on Information Systems 2022.
James, S. and Duncan, A. D. (2023). Over 100 data and an-
alytics predictions through 2028. Gartner Research,
pages 1–24.
Joshi, M. P., Su, N., Austin, R. D., and Sundaram, A. K.
(2021). Why so many data science projects fail to de-
liver. 62(3):84–90.
Kitchenham, B. (2004). Procedures for performing system-
atic reviews.
Kruhse-Lehtonen, U. and Hofmann, D. (2020). How to de-
fine and execute your data and ai strategy. Harvard
Data Science Review.
Kuckartz, U. and R
¨
adiker, S. (2022). Qualitative Inhalt-
sanalyse. Methoden, Praxis, Computerunterst
¨
utzung:
Grundlagentexte Methoden. Grundlagentexte Meth-
oden. Beltz Juventa, Weinheim and Basel, 5. auflage
edition.
Kutzias, D., Dukino, C., and Kett, H. (2021). Towards a
continuous process model for data science projects. In
Leitner, C., Ganz, W., Satterfield, D., and Bassano, C.,
editors, Advances in the Human Side of Service En-
gineering, volume 266 of Lecture Notes in Networks
and Systems, pages 204–210. Springer International
Publishing, Cham.
Lam, H. T., Buesser, B., Min, H., Minh, T. N., Wistuba,
M., Khurana, U., Bramble, G., Salonidis, T., Wang,
D., and Samulowitz, H. (2021). Automated data sci-
ence for relational data. In 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE),
pages 2689–2692. IEEE.
Li, G., Yuan, C., Kamarthi, S., Moghaddam, M., and Jin, X.
(2021). Data science skills and domain knowledge re-
quirements in the manufacturing industry: A gap anal-
ysis. Journal of Manufacturing Systems, 60:692–706.
Lwakatare, L. E., R
˚
ange, E., Crnkovic, I., and Bosch,
J. (2021). On the experiences of adopting auto-
mated data validation in an industrial machine learn-
ing project. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP), pages 248–257.
IEEE.
Macas, M., Lagla, L., Fuertes, W., Guerrero, G., and Toulk-
eridis, T. (2017). Data mining model in the discovery
of trends and patterns of intruder attacks on the data
network as a public-sector innovation. In Ter
´
an, L. and
Meier, A., editors, 2017 Fourth International Con-
ference on eDemocracy & eGovernment (ICEDEG),
pages 55–62. IEEE, Piscataway, NJ.
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
498