
and comprehensive probabilistic programming frame-
work in python. PeerJ Computer Science, 9:e1516.
Bertolini, R., Finch, S. J., and Nehm, R. H. (2023). An
application of bayesian inference to examine student
retention and attrition in the stem classroom. Frontiers
in Education, 8:1073829.
Blei, D. M., Kucukelbir, A., and McAuliffe, J. D.
(2017). Variational inference: A review for statisti-
cians. Journal of the American Statistical Association,
112(518):859–877.
Campbell, J. P. (2007). Utilizing Student Data Within
the Course Management System to Determine Under-
graduate Student Academic Success: An Exploratory
Study. Doctoral dissertation, Purdue University, West
Lafayette, IN. UMI No. 3287222.
Capretto, T., Piho, C., Kumar, R., Westfall, J., Yarkoni, T.,
and Martin, O. A. (2022). Bambi: A simple interface
for fitting bayesian linear models in python.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M., Guo, J.,
Li, P., and Riddell, A. (2017). Stan: A probabilistic
programming language. Journal of Statistical Soft-
ware, 76(1):1–32.
Chen, X., Zou, D., and Xie, H. (2022). A decade of learning
analytics: Structural topic modeling based bibliomet-
ric analysis. Education and Information Technologies,
27:10517–10561.
Dai, M., Hung, J., Du, X., Tang, H., and Li, H. (2021).
Knowledge tracing: A review of available technolo-
gies. Journal of Educational Technology Development
and Exchange (JETDE), 14(2):1–20.
Deberard, S. M., Julka, G. I., and Deana, L. (2004). Pre-
dictors of academic achievement and retention among
college freshmen: A longitudinal study. College Stu-
dent Journal, 38(1):66–81.
Delen, D. (2010). A comparative analysis of machine learn-
ing techniques for student retention management. De-
cision Support Systems, 49(4):498–506.
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth,
D. (1987). Hybrid monte carlo. Physics Letters B,
195(2):216–222.
Easystats (2024). Highest density interval (hdi). Accessed:
2024-08-18.
Gelman, A. and Hill, J. (2006). Data Analysis Using Re-
gression and Multilevel/Hierarchical Models. Cam-
bridge University Press, Cambridge.
Gelman, A., Hill, J., McCarty, C. B., Dunson, D. B., Ve-
htari, A., and Rubin, D. B. (2013). Bayesian Data
Analysis. Chapman and Hall/CRC, 3rd edition.
Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y.-S. (2008).
A weakly informative default prior distribution for lo-
gistic and other regression models. The Annals of Ap-
plied Statistics, 2(4):1360 – 1383.
Geman, S. and Geman, D. (1984). Stochastic relaxation,
gibbs distributions, and the bayesian restoration of im-
ages. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(6):721–741.
Gilks, W. R., Thomas, A., and Spiegelhalter, D. J. (1994).
A language and program for complex bayesian mod-
elling. The Statistician, 43:169–178.
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B.,
Poole, C., Goodman, S. N., and Altman, D. G. (2016).
Statistical tests, p values, confidence intervals, and
power: a guide to misinterpretations. European jour-
nal of epidemiology, 31(4):337–350.
Hastings, W. K. (1970). Monte Carlo sampling methods us-
ing Markov chains and their applications. Biometrika,
57(1):97–109.
Homan, M. D. and Gelman, A. (2014). The no-u-turn sam-
pler: adaptively setting path lengths in hamiltonian
monte carlo. J. Mach. Learn. Res., 15(1):1593–1623.
Jolly, P. (2018). Pymer4: Connecting r and python for linear
mixed modeling. Journal of Open Source Software,
3(31):862.
Kruschke, J. (2014). Doing Bayesian Data Analysis: A Tu-
torial with R, JAGS, and Stan. Academic Press.
Kruschke, J. K. (2018). Rejecting or accepting parame-
ter values in bayesian estimation. Advances in Meth-
ods and Practices in Psychological Science, 1(2):270–
280.
Kumar, R. et al. (2019). Arviz: A unified library for ex-
ploratory analysis of bayesian models in python. Jour-
nal of Open Source Software, 4(33):1143.
Laur
´
ıa, E., Stenton, E., and Presutti, E. (2020). Boosting
early detection of spring semester freshmen attrition:
A preliminary exploration. In Proceedings of the 12th
International Conference on Computer Supported Ed-
ucation - Volume 2: CSEDU, pages 130–138, ISBN
978-989-758-417-6, ISSN 2184-5026. SciTePress.
NCES (2022). Undergraduate retention and graduation
rates. Condition of education, National Center for Ed-
ucation Statistics, U.S. Department of Education, In-
stitute of Education Sciences. Retrieved August 2024.
NSCRC (2014). Completing college: A national view of
student attainment rates – fall 2014 cohort. Techni-
cal report, National Student Clearinghouse Research
Center.
Phan, D., Pradhan, N., and Jankowiak, M. (2019). Compos-
able effects for flexible and accelerated probabilistic
programming in numpyro.
Plummer, M. (2003). Jags: A program for analysis of
bayesian graphical models using gibbs sampling. In
Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003), pages
1–10, Vienna.
Vehtari, A., Gelman, A., and Gabry, J. (2017). Prac-
tical bayesian model evaluation using leave-one-out
cross-validation and waic. Statistical Computing,
27(2):1413–1432.
Watanabe, S. (2010). Asymptotic equivalence of bayes
cross validation and widely applicable information
criterion in singular learning theory. Journal of Ma-
chine Learning Research, 11:3571–3594.
Westfall, J. (2017). Statistical details of the default priors in
the bambi library.
Yudelson, M. V., Koedinger, K. R., and Gordon, G. J.
(2013). Individualized bayesian knowledge tracing
models. In Artificial Intelligence in Education, vol-
ume 7926 of Lecture Notes in Computer Science,
pages 171–180. Springer.
Predictors of Freshmen Attrition: A Case Study of Bayesian Methods and Probabilistic Programming
131