
Knowledge in Information Systems and Technologies:
Volume 2, pages 198–207. Springer.
Asano, M., Iryo, T., and Kuwahara, M. (2010). Microscopic
pedestrian simulation model combined with a tacti-
cal model for route choice behaviour. Transportation
Research Part C: Emerging Technologies, 18(6):842–
855.
Cui, X. and Shi, H. (2011). A*-based pathfinding in modern
computer games. International Journal of Computer
Science and Network Security, 11(1):125–130.
Franke, K., St
¨
urmer, J. M., and Koch, T. (2023). Automated
simulation and virtual reality coupling for interactive
digital twins. In 2023 Winter Simulation Conference
(WSC), pages 2615–2626. IEEE.
Grieves, M. (2015). Digital twin: Manufacturing excellence
through virtual factory replication. White Paper.
Han, T., Zhao, J., and Li, W. (2020). Smart-guided pedes-
trian emergency evacuation in slender-shape infras-
tructure with digital twin simulations. Sustainability,
12(22):9701.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107.
Kleinmeier, B., Z
¨
onnchen, B., G
¨
odel, M., and K
¨
oster, G.
(2019). Vadere: An open-source simulation frame-
work to promote interdisciplinary understanding.
Kneidl, A., Hartmann, D., and Borrmann, A. (2013). A hy-
brid multi-scale approach for simulation of pedestrian
dynamics. Transportation Research Part C: Emerging
Technologies, 37:223–237.
K
¨
oster, G., Hartmann, D., and Klein, W. (2011). Micro-
scopic Pedestrian Simulations: From Passenger Ex-
change Times to Regional Evacuation, pages 571–
576. Springer Berlin Heidelberg.
Schuhb
¨
ack, S., Daßler, N., Wischhof, L., and K
¨
oster, G.
(2019). Towards a bidirectional coupling of pedes-
trian dynamics and mobile communication simula-
tion. EPiC Series in Computing, 66(13):60–67.
Schultz, M. (2010). Entwicklung eines individuenbasierten
Modells zur Abbildung des Bewegungsverhaltens von
Passagieren im Flughafenterminal. PhD thesis, Tech-
nische Universitaet Dresden.
Seitz, M. J. and K
¨
oster, G. (2012). Natural discretization of
pedestrian movement in continuous space. Physical
Review E, 86(4):046108.
Sethian, J. A. (1996). A fast marching level set method for
monotonically advancing fronts. Proceedings of the
National Academy of Sciences, 93(4):1591–1595.
Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn,
B. D., Todd, M. D., Mahadevan, S., Hu, C., and Hu,
Z. (2022). A comprehensive review of digital twin
- part 1: modeling and twinning enabling technolo-
gies. Structural and Multidisciplinary Optimization,
65(12).
Umemoto, D., Kikuchi, M., Terui, A., Abe, K., Shimizu,
R., Hirashige, K., Ito, N., and Noda, I. (2024). Urban
scale pedestrian simulation in kobe city center. Artifi-
cial Life and Robotics, 29(2):211–217.
von Sivers, I. and K
¨
oster, G. (2015). Realistic stride length
adaptation in the optimal steps model. In Traffic and
Granular Flow ’13, pages 171–178, Cham. Springer
International Publishing.
Wang, Z., Zheng, O., Li, L., Abdel-Aty, M., Cruz-Neira,
C., and Islam, Z. (2023). Towards next generation of
pedestrian and connected vehicle in-the-loop research:
A digital twin co-simulation framework. IEEE Trans-
actions on Intelligent Vehicles, 8(4):2674–2683.
Weidmann, U. (1993). Transporttechnik der Fußg
¨
anger,
volume 2 of Schriftreihe des IVT Nr. 90. Institut
f
¨
ur Verkehrsplanung, Transporttechnik, Straßen- und
Eisenbahnbau Z
¨
urich, Erg
¨
anzte Auflage edition.
White, G., Zink, A., Codec
´
a, L., and Clarke, S. (2021). A
digital twin smart city for citizen feedback. Cities,
110:103064.
SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
304