
ACKNOWLEDGMENTS
This work was partially funded by Lenovo as part of
its R&D investment under the Information Technol-
ogy Law. The authors would like to thank LSBD/UFC
for the partial funding of this research.
REFERENCES
Bahgat, M., Wilson, S., and Magdy, W. (2022). Liwc-ud:
Classifying online slang terms into liwc categories.
In Proceedings of the 14th ACM Web Science Con-
ference 2022, WebSci ’22, page 422–432, New York,
NY, USA. Association for Computing Machinery.
Carvalho, F., Junior, F. P., Ogasawara, E., Ferrari, L.,
and Guedes, G. (2023). Evaluation of the brazil-
ian portuguese version of linguistic inquiry and word
count 2015 (bp-liwc2015). Lang. Resour. Eval.,
58(1):203–222.
Carvalho, F., Santos, G., and Guedes, G. P. (2018).
Affectpt-br: an affective lexicon based on liwc 2015.
In 2018 37th International Conference of the Chilean
Computer Science Society (SCCC), pages 1–5.
CROCH
´
IK, J. L. (1997). Preconceito, Indiv
´
ıduo e Cultura.
Robe Editorial, S
˜
ao Paulo, 1 edition.
de S
´
a, I. C., Gadelha, T., Vinuto, T., da Silva, J. W. F., Mon-
teiro, J. M., and Machado, J. C. (2023a). A real-time
platform to monitoring misinformation on telegram.
In Filipe, J., Smialek, M., Brodsky, A., and Ham-
moudi, S., editors, Proceedings of the 25th Interna-
tional Conference on Enterprise Information Systems,
ICEIS 2023, Volume 1, Prague, Czech Republic, April
24-26, 2023, pages 271–278. SCITEPRESS.
de S
´
a, I. C., Galic, L., Franco, W., Gadelha, T., Monteiro,
J. M., and Machado, J. C. (2023b). BATMAN: A big
data platform for misinformation monitoring. In Fil-
ipe, J., Smialek, M., Brodsky, A., and Hammoudi, S.,
editors, Proceedings of the 25th International Confer-
ence on Enterprise Information Systems, ICEIS 2023,
Volume 1, Prague, Czech Republic, April 24-26, 2023,
pages 237–246. SCITEPRESS.
Dinu, L. P., Iordache, I.-B., Uban, A. S., and Zampieri, M.
(2021). A computational exploration of pejorative lan-
guage in social media. In Moens, M.-F., Huang, X.,
Specia, L., and Yih, S. W.-t., editors, Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 3493–3498, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.
GOLDSTEIN, J. (1983). Psicologia social. Guanabara, Rio
de Janeiro, 1 edition.
Leite, J. A., Silva, D., Bontcheva, K., and Scarton, C.
(2020). Toxic language detection in social media for
Brazilian Portuguese: New dataset and multilingual
analysis. In Wong, K.-F., Knight, K., and Wu, H., ed-
itors, Proceedings of the 1st Conference of the Asia-
Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Confer-
ence on Natural Language Processing, pages 914–
924, Suzhou, China. Association for Computational
Linguistics.
MEZAN, R. (1998). Tempo de muda: ensaios de psi-
can
´
alise. Cia das Letras, S
˜
ao Paulo, 1 edition.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Pranckevi
ˇ
cius, T. and Marcinkevi
ˇ
cius, V. (2017). Compari-
son of naive bayes, random forest, decision tree, sup-
port vector machines, and logistic regression classi-
fiers for text reviews classification. Baltic Journal of
Modern Computing, 5(2):221.
Rosenfeld, A., Sina, S., Sarne, D., Avidov, O., and Kraus,
S. (2018). A study of whatsapp usage patterns and
prediction models without message content. arXiv
preprint arXiv:1802.03393.
Rubin, V. L., Chen, Y., and Conroy, N. K. (2015). Deception
detection for news: three types of fakes. Proceedings
of the Association for Information Science and Tech-
nology, 52(1):1–4.
Sert, B. and
¨
Ulker, S. V. (2023). A review of liwc and ma-
chine learning approaches on mental health diagnosis.
Social Review of Technology and Change, 1(2):71–92.
Taso, F., Reis, V., and Martinez, F. (2023). Sexismo no
brasil: an
´
alise de um word embedding por meio de
testes baseados em associac¸
˜
ao impl
´
ıcita. In Anais do
XIV Simp
´
osio Brasileiro de Tecnologia da Informac¸
˜
ao
e da Linguagem Humana, pages 53–62, Porto Alegre,
RS, Brasil. SBC.
Vargas, F., Carvalho, I., Rodrigues de G
´
oes, F., Pardo, T.,
and Benevenuto, F. (2022). HateBR: A large ex-
pert annotated corpus of Brazilian Instagram com-
ments for offensive language and hate speech de-
tection. In Calzolari, N., B
´
echet, F., Blache, P.,
Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isa-
hara, H., Maegaard, B., Mariani, J., Mazo, H., Odijk,
J., and Piperidis, S., editors, Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 7174–7183, Marseille, France. European
Language Resources Association.
Vargas, F., Rodrigues de G
´
oes, F., Carvalho, I., Benevenuto,
F., and Pardo, T. (2021). Contextual-lexicon approach
for abusive language detection. In Mitkov, R. and An-
gelova, G., editors, Proceedings of the International
Conference on Recent Advances in Natural Language
Processing (RANLP 2021), pages 1438–1447, Held
Online. INCOMA Ltd.
Widmann, T. and Wich, M. (2023). Creating and comparing
dictionary, word embedding, and transformer-based
models to measure discrete emotions in german po-
litical text. Political Analysis, 31(4):626–641.
Wohlin, C., Runeson, P., H
¨
ost, M., Ohlsson, M. C., Reg-
nell, B., and Wessl
´
en, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.
Zhu, J., Zhang, Z., Guo, Z., and Li, Z. (2024). Sentiment
classification of anxiety-related texts in social media
via fuzing linguistic and semantic features. IEEE
Transactions on Computational Social Systems, pages
1–11.
An Approach for the Automatic Detection of Prejudice in Instant Messaging Applications
119