
Kumar, S. (2024). Parallel hybrid quantum-classical
machine learning for kernelized time-series classifica-
tion. Quantum Machine Intelligence, 6.
Belis, V., Wo
´
zniak, K., Puljak, E., Barkoutsos, P., Disser-
tori, G., Grossi, M., Pierini, M., Reiter, F., Tavernelli,
I., and Vallecorsa, S. (2024). Quantum anomaly de-
tection in the latent space of proton collision events at
the lhc. Communications Physics, 7.
Benitez, J. and Thome, N. (2006). k -group periodic ma-
trices. SIAM Journal on Matrix Analysis and Applica-
tions, 28:9–25.
Berndt, D. and Clifford, J. (1994). Using dynamic time
warping to find patterns in time series. In KDD work-
shop, volume 10, pages 359–370.
Bronstein, M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. (2017). Geometric deep learning: go-
ing beyond euclidean data. IEEE Signal Processing
Magazine, 34(4):18–42.
Buhrman, H., Cleve, R., Watrous, J., and de Wolf, R.
(2001). Quantum fingerprinting. Phys. Rev. Lett.,
87:167902.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.,
Endo, S., Fujii, K., McClean, J., Mitarai, K., Yuan, X.,
Cincio, L., and Coles, P. (2021a). Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644.
Cerezo, M., Larocca, M., Garc
´
ıa-Mart
´
ın, D., Diaz, N.,
Braccia, P., Fontana, E., Rudolph, M., Bermejo, P.,
Ijaz, A., Thanasilp, S., Anschuetz, E., and Holmes, Z.
(2024). Does provable absence of barren plateaus im-
ply classical simulability? or, why we need to rethink
variational quantum computing.
Cerezo, M., Sone, A., Volkoff, T., Cincio, L., and Coles, P.
(2021b). Cost function dependent barren plateaus in
shallow parametrized quantum circuits. Nature Com-
munications, 12.
Crooks, G. (2019). Gradients of parameterized quantum
gates using the parameter-shift rule and gate decom-
position.
Darban, Z., Webb, G., Pan, S., Aggarwal, C., and Salehi,
M. (2024). Deep learning for time series anomaly de-
tection: A survey. ACM Comput. Surv., 57(1).
G
¨
onen, M. and Alpaydin, E. (2011). Multiple kernel learn-
ing algorithms. Journal of Machine Learning Re-
search, 12(64):2211–2268.
Havl
´
ı
ˇ
cek, V., C
´
orcoles, A., Temme, K., Harrow, A., Kan-
dala, A., Chow, J., and Gambetta, J. (2019). Super-
vised learning with quantum-enhanced feature spaces.
Nature, 567(7747):209–212.
Henderson, M., Shakya, S., Pradhan, S., and Cook, T.
(2019). Quanvolutional neural networks: Powering
image recognition with quantum circuits.
Holmes, Z., Sharma, K., Cerezo, M., and Coles, P. (2022).
Connecting ansatz expressibility to gradient magni-
tudes and barren plateaus. PRX Quantum, 3:010313.
Incudini, M., Lizzio Bosco, D., Martini, F., Grossi, M.,
Serra, G., and Di Pierro, A. (2024). Automatic and
effective discovery of quantum kernels. IEEE Trans-
actions on Emerging Topics in Computational Intelli-
gence, PP:1–10.
Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C.,
Lishman, J., Gacon, J., Martiel, S., Nation, P., Bishop,
L., Cross, A., Johnson, B., and Gambetta, J. (2024).
Quantum computing with Qiskit.
Jeswal, S. and Chakraverty, S. (2018). Recent develop-
ments and applications in quantum neural network: A
review. Archives of Computational Methods in Engi-
neering, 26:793 – 807.
Kim, Y., Eddins, A., Anand, S., Wei, K., Berg, E., Rosen-
blatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K.,
and Kandala, A. (2023). Evidence for the utility of
quantum computing before fault tolerance. Nature,
618:500–505.
Lei, H. and Sun, B. (2007). A study on the dynamic time
warping in kernel machines. In 2007 Third Interna-
tional IEEE Conference on Signal-Image Technolo-
gies and Internet-Based System, pages 839–845.
Liu, Y., Arunachalam, S., and Temme, K. (2021). A rig-
orous and robust quantum speed-up in supervised ma-
chine learning. Nature Physics, 17:1–5.
Mattern, D., Martyniuk, D., Willems, H., Bergmann, F., and
Paschke, A. (2021). Variational Quanvolutional Neu-
ral Networks with enhanced image encoding.
Minh, H. Q., Niyogi, P., and Yao, Y. (2006). Mercer’s theo-
rem, feature maps, and smoothing. In Lugosi, G. and
Simon, H. U., editors, Learning Theory, pages 154–
168, Berlin, Heidelberg. Springer Berlin Heidelberg.
Mishra, N., Kapil, M., Rakesh, H., Anand, A., Mishra,
N., Warke, A., Sarkar, S., Dutta, S., Gupta, S.,
Prasad Dash, A., Gharat, R., Chatterjee, Y., Roy,
S., Raj, S., Kumar Jain, V., Bagaria, S., Chaud-
hary, S., Singh, V., Maji, R., Dalei, P., Behera,
B. K., Mukhopadhyay, S., and Panigrahi, P. K. (2021).
Quantum machine learning: A review and current sta-
tus. In Sharma, N., Chakrabarti, A., Balas, V. E., and
Martinovic, J., editors, Data Management, Analytics
and Innovation, pages 101–145. Springer Singapore.
Nielsen, M. A. and Chuang, I. L. (2010). Quantum Com-
putation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press.
Peral-Garc
´
ıa, D., Cruz-Benito, J., and Garc
´
ıa-Pe
˜
nalvo, F.
(2024). Systematic literature review: Quantum ma-
chine learning and its applications. Computer Science
Review, 51:100619.
Ragone, M., Braccia, P., Nguyen, Q., Schatzki, L., Coles,
P., Sauvage, F., Larocca, M., and Cerezo, M. (2023).
Representation theory for geometric quantum ma-
chine learning.
Rath, M. and Date, H. (2024). Quantum data encoding:
a comparative analysis of classical-to-quantum map-
ping techniques and their impact on machine learning
accuracy. EPJ Quantum Technology, 11.
Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quan-
tum support vector machine for big data classification.
Physical Review Letters, 113(13).
Ruder, S. (2017). An overview of gradient descent opti-
mization algorithms.
Schnabel, J. and Roth, M. (2024). Quantum kernel methods
under scrutiny: A benchmarking study.
Periodic Unitary Encoding for Quantum Anomaly Detection of Temporal Series
35