
balances privacy and utility across different privacy
budgets, making it ideal for privacy-sensitive appli-
cations such as medical diagnostics, brain-computer
interfaces, and other EEG-based systems.
REFERENCES
Agarwal, A., Dowsley, R., McKinney, N. D., Wu, D.,
Lin, C.-T., De Cock, M., and Nascimento, A.
(2018). Privacy-preserving linear regression for brain-
computer interface applications. In 2018 IEEE Inter-
national Conference on Big Data (Big Data), pages
5277–5278. IEEE.
Alshebli, S., Alshehhi, M., and Yeun, C. Y. (2024). Inves-
tigating how data poising attacks can impact an eeg-
based federated learning model. In 2024 2nd Interna-
tional Conference on Cyber Resilience (ICCR), pages
1–6. IEEE.
Bidgoly, A. J., Bidgoly, H. J., and Arezoumand, Z. (2022).
Towards a universal and privacy preserving eeg-based
authentication system. Scientific Reports, 12(1):1–12.
Brocol, X. et al. (2021). Brain-computer interfaces in safety
and security fields: Risks and applications. Journal of
Neuroscience, 40:123–135.
Cisotto, G., Zancanaro, A., Zoppis, I. F., and Manzoni,
S. L. (2023). hveegnet: exploiting hierarchical vaes on
eeg data for neuroscience applications. arXiv preprint
arXiv:2312.00799.
Debie, E., Moustafa, N., and Whitty, M. T. (2020).
A privacy-preserving generative adversarial network
method for securing eeg brain signals. In 2020
International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.
Douibi, K. et al. (2021). Toward eeg-based bci applications
for industry 4.0: Challenges and possible applications.
Frontiers in Human Neuroscience, 15:705064.
Dwork, C. (2006). Differential privacy. automata, lan-
guages and programming. In 33rd International Col-
loquium, ICALP.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., and Courville, Aaron
& Bengio, Y. (2014). Generative adversarial nets.
Advances in neural information processing systems,
27:2672–2680.
Graves, A. (2013). Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.
Gui, Q., Yang, W., Jin, Z., Ruiz-Blondet, M. V., and Las-
zlo, S. (2016). A residual feature-based replay attack
detection approach for brainprint biometric systems.
In 2016 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6. IEEE.
Hershey, J. R. and Olsen, P. A. (2007). Approximating the
kullback leibler divergence between gaussian mixture
models. In 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing-ICASSP’07,
volume 4, pages IV–317. IEEE.
Janapati, R., Dalal, V., and Sengupta, R. (2021). Advances
in modern eeg-bci signal processing: A review. Mate-
rials Today: Proceedings, 80:2563–2566.
Lahlou, S., Deleu, T., Lemos, P., Zhang, D., Volokhova, A.,
Hern
´
andez-Garcıa, A., Ezzine, L. N., Bengio, Y., and
Malkin, N. (2023). A theory of continuous generative
flow networks. In International Conference on Ma-
chine Learning, pages 18269–18300. PMLR.
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
S. M., Hung, C. P., and Lance, B. J. (2018). Eeg-
net: a compact convolutional neural network for eeg-
based brain–computer interfaces. Journal of neural
engineering, 15(5):056013.
Leeb, R., Brunner, C., M
¨
uller-Putz, G., Schl
¨
ogl, A., and
Pfurtscheller, G. (2008). Bci competition 2008–graz
data set b. Graz University of Technology, Austria,
16:1–6.
Li, J. et al. (2023). Meta-learning for fast and privacy-
preserving source knowledge transfer of eeg-based
bcis. IEEE Transactions on Neural Systems and Re-
habilitation Engineering, 31:123–134.
Mironov, I. (2017). R
´
enyi differential privacy. In 2017
IEEE 30th Computer Security Foundations Sympo-
sium (CSF), pages 263–275. IEEE.
Popescu, D., Voicu, R., and Bichindaritz, I. (2021). Privacy-
preserving classification of eeg data using machine
learning and homomorphic encryption. IEEE Access,
9:25979–25989.
Sakoe, H. and Chiba, S. (1978). Dynamic programming
algorithm optimization for spoken word recognition.
IEEE transactions on acoustics, speech, and signal
processing, 26(1):43–49.
Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J.,
Glasstetter, M., Eggensperger, K., Tangermann, M.,
Hutter, F., Burgard, W., and Ball, T. (2017). Deep
learning with convolutional neural networks for eeg
decoding and visualization. Human brain mapping,
38(11):5391–5420.
Singh, G., Patel, P., Asaduzzaman, M., and Bajwa, G.
(2023). Selective eeg signal anonymization using
multi-objective autoencoders. In 2023 20th Annual In-
ternational Conference on Privacy, Security and Trust
(PST), pages 1–7. IEEE.
Sutskever, I., Martens, J., and Hinton, G. E. (2011). Gener-
ating text with recurrent neural networks. In Proceed-
ings of the 28th international conference on machine
learning (ICML-11), pages 1017–1024.
Torfi, A. and Fox, Edward A & Reddy, C. K. (2022).
Differentially private synthetic medical data genera-
tion using convolutional gans. Information Sciences,
586:485–500.
Torres, E. P., Torres, E. A., Hern
´
andez-
´
Alvarez, M., and
Yoo, S. G. (2020). Eeg-based bci emotion recognition:
A survey. Sensors, 20(18):5083.
Zhang, Z., Li, J., Yu, S., and Makaya, C. (2021). Safe-
learning: Enable backdoor detectability in federated
learning with secure aggregation. arXiv:2102.02402.
Zhang, Z., Pinto, A., Turina, V., Esposito, F., and Matta,
I. (2023). Privacy and efficiency of communications
in federated split learning. IEEE Transactions on Big
Data, 9(5):1380–1391.
Privacy-Preserving EEG Data Generation: A Federated Split Learning Approach Using Privacy-Adaptive Autoencoders and Secure
Aggregation with GFlowNet
643