
Table 1: Detailed Performance Comparison of Recent Approaches.
Feature Our Work Trust-HC D-ACSM DLGA
(2025) (Lapegna et al., 2023) (Balakrishna, 2022) (Merah et al., 2024)
Latency (ms) 28.37 46.1 41.5 35.8
Energy Efficiency (%) 92 76.5 74.2 81.7
Throughput (Mbps) 23.35 14.8 18.1 19.9
Security Implementation AES-128 Trust-based Limited SDN-based
Network Stability (%) 98 81.3 84.7 87.9
Message Success Rate (%) 99.91 84.9 87.5 89.8
ACKNOWLEDGMENTS
This work was supported by the Department of Com-
puter Science, College of Engineering and Computer
Science, JAZAN University, KSA; Department of
Computer Engineering, College of Computer Science
and Engineering, TAIBAH University, KSA; and the
School of Electrical and Data Engineering, Faculty of
Engineering and IT, University of Technology Syd-
ney, Australia.
REFERENCES
Abuarqoub, A. (2020). A review of the control plane scala-
bility approaches in software-defined networking. Fu-
ture Internet, 12(3):49.
Ajayi, O., Rafferty, J., Santos, J., Garcia-Constantino, M.,
and Cui, Z. (2021). Beca: A blockchain-based edge
computing architecture for internet of things systems.
IoT, 2:610–632.
Balakrishna, S. (2022). D-acsm: A technique for dy-
namically assigning and adjusting cluster patterns for
iot data analysis. The Journal of Supercomputing,
78:12873–12897.
Bouguettaya, A., Sheng, Q. Z., Benatallah, B., Neiat, A. G.,
Mistry, S., Ghose, A., Nepal, S., and Yao, L. (2021).
An internet of things service roadmap. Commun.
ACM, 64(9):86–95.
Canavese, D., Mannella, L., Regano, L., and Basile, C.
(2024). Security at the edge for resource-limited iot
devices. Sensors, 24(2).
Chiang, Y., Zhang, Y., Luo, H., Chen, T.-Y., Chen, G.-H.,
Chen, H.-T., Wang, Y.-J., Wei, H.-y., and Chou, C.-T.
(2023). Management and orchestration of edge com-
puting for iot: A comprehensive survey. IEEE Internet
of Things Journal, PP:1–1.
Ferrag, M. A., Shu, L., Yang, X., Derhab, A., and Maglaras,
L. (2020). Security and privacy for green iot-based
agriculture: Review, blockchain solutions, and chal-
lenges. IEEE Access, PP.
Gyamfi, E. and Jurcut, A. (2022). Intrusion detection
in internet of things systems: A review on design
approaches leveraging multi-access edge computing,
machine learning, and datasets. Sensors, 22:3744.
Jere, S., Fan, Q., Shang, B., Li, L., and Liu, L. (2020).
Federated learning in mobile edge computing: An
edge-learning perspective for beyond 5g. ArXiv,
abs/2007.08030.
Kumar, U., Verma, P., and Abbas, S. (2021). Bringing edge
computing into iot architecture to improve iot network
performance. pages 1–5.
Lapegna, M., Mele, V., and Romano, D. (2023). Cluster-
ing algorithms for enhanced trustworthiness on high-
performance edge-computing devices. Electronics,
12:1689.
Li, X., Song, Y., and Li, Y. (2023). An approach to de-
tect iot botnet attacks based on hierarchical clustering.
page 75.
Mansour, M., Gamal, A., Ahmed, A. I., Said, L. A., Elbaz,
A., Herencsar, N., and Soltan, A. (2023). Internet of
things: A comprehensive overview on protocols, ar-
chitectures, technologies, simulation tools, and future
directions. Energies, 16(8).
Merah, M., Aliouat, Z., and Mabed, H. (2024). Dynamic
load balancing of traffic in the iot edge computing en-
vironment using a clustering approach based on deep
learning and genetic algorithms. Cluster Computing,
28.
Mohamed, A., Saber, W., Elnahry, I., and Hassanien, A. E.
(2020). Coyote optimization based on a fuzzy logic
algorithm for energy-efficiency in wireless sensor net-
works. IEEE Access, 8:185816–185829.
Nasri, M., Lamiri, A., Maaref, H., and Mghaieth, R. (2021).
Adaptive dynamic multi-hop technique for clustering
protocol in wireless sensor networks assisted-internet
of things applications. IET Networks, 11.
Sadrishojaei, M., Navimipour, N., Reshadi, M., Hossein-
zadeh, M., and Unal, M. (2022). An energy-aware
clustering method in the iot using a swarm-based al-
gorithm. Wireless Networks, 28.
Wang, J., Ping, G., Wang, H., Zhang, W., Sun, C., Zhao, B.,
and Chen, e. (2022). A right transfer access control
model of internet of things based on smart contract.
Security and Communication Networks, 2022:1–11.
Xiang, Z., Wang, D., He, M., and Chen, Y. (2023). Dy-
namic system reconfiguration in stable and green edge
service provisioning. Mobile Networks and Applica-
tions, pages 1–17.
Zhang, Y., Yu, H., Zhou, W., and Man, M. (2023). Applica-
tion and research of iot architecture for end-net-cloud
edge computing. Electronics, 12(1).
Secure and Hybrid Clustering for IoT Networks: An Adaptive Dynamic Reconfigurability Approach
419