
Alsowail, M. (2021). A framework for insider threat de-
tection in organizations. International Journal of Ad-
vanced Computer Science and Applications (IJACSA),
12(5):641–648.
Awad, M. and Khanna, R. (2015). Machine Learning for
Big Data: Hands-On for Developers and Technical
Professionals. Apress.
Borky, J. M. and Bradley, T. H. (2018). Effective Model-
Based Systems Engineering. Springer.
Cappelli, D. M., Moore, A. P., and Trzeciak, R. F. (2012).
The CERT Guide to Insider Threats: How to Pre-
vent, Detect, and Respond to Information Technology
Crimes (Theft, Sabotage, Fraud). Addison-Wesley
Professional.
Carta, S. et al. (2020). Local feature selection for anomaly
detection in user activity logs. Journal of Machine
Learning Research, 21:1059–1087.
Colwill, C. (2009). Insider threats in the cyber security con-
text. Cybersecurity Review.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Gamachchi, A., Lakshmanan, V., and Mathur, A. (2018).
Graph-based anomaly detection in user activity data
for insider threat detection. Journal of Cybersecurity
and Privacy, 5(2):205–218.
Garba, M., Bello, F., and Lawal, S. (2021). Email anomaly
detection using clustering techniques: A case study
on cert insider threat datasets. International Jour-
nal of Advanced Computer Science and Applications
(IJACSA), 12(5):200–212.
Grishman, R. (1997). Information extraction: Techniques
and challenges. Information Extraction: A Multidis-
ciplinary Approach to an Emerging Information Tech-
nology, 1299:10–27.
Jiang, W., Li, Y., and Chen, P. (2018). Prediction of insider
threats using psychological profiling based on email
content analysis in cert dataset. Journal of Cyberse-
curity Research, 10(3):45–57.
Lample, G., Conneau, A., Ranzato, M., and Denoyer, L.
(2016). Neural machine translation with attention
mechanism. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2336–2345.
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., and Soricut, R. (2019). Albert: A lite bert for
self-supervised learning of language representations.
arXiv preprint arXiv:1909.11942.
Larose, D. T. and Larose, C. D. (2015). Discovering Knowl-
edge in Data: An Introduction to Data Mining. John
Wiley & Sons.
Lin, X., Zhang, W., and Wang, J. (2017). A study on prin-
cipal component analysis for anomaly detection. In
2017 International Conference on Green Informatics,
pages 345–350. IEEE.
Liu, F., Ting, K. M., and Zhou, Z.-H. (2008). Isola-
tion forest. Data Mining and Knowledge Discovery,
17(3):411–421.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Manning, C. D., Raghavan, P., and Sch
¨
utze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.
Miller, D. (2020). Anomaly detection for insider threat de-
tection. Journal of Cybersecurity.
Mittal, P. and Khurana, N. (2022). Proposed insider threat
detection framework using email sentiment analysis
and machine learning techniques. International Jour-
nal of Cybersecurity and Digital Forensics, 15(4):78–
92.
Mittal, P., Khurana, N., and Sharma, R. (2023). Prediction
and detection of insider threats using lda and senti-
ment polarity analysis. Journal of Information Secu-
rity and Applications, 36(1):14–27.
Neumann, P. (2012). The CERT Guide to Insider Threats:
How to Prevent, Detect, and Respond to Information
Technology Crimes. Addison-Wesley Professional.
OpenAI (2023). Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.
Reynolds, L. and McDonell, K. (2021). Prompt program-
ming for large language models: Beyond few-shot
learning. arXiv preprint arXiv:2102.07350.
Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019).
Distilbert, a distilled version of bert: Smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108.
Sch
¨
olkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. (2001). Support vector ma-
chine for novelty detection. In Advances in Neural
Information Processing Systems (NIPS), volume 13,
pages 582–588. MIT Press.
Wang, R. and El Saddik, A. (2023). Dtitd: Deep
transformer-based insider threat detection framework.
IEEE Transactions on Information Forensics and Se-
curity, 18:123–135.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
178