
Software and Web Resources (FEDER and the State
Research Agency (AEI) of the Spanish Govern-
ment: PID2019-104735RB-C42); CASIA project:
Calidad de Sistemas de Inteligencia Artificial (EXP.
13/23/IN/002), funded by the Junta de Comunidades
de Castilla-La Mancha and FEDER, and AIMM
project: Artificial Intelligent Maturity Model (EXP.
13/24/IN/057), funded by the Junta de Comunidades
de Castilla-La Mancha and FEDER.
REFERENCES
Anand, S. and Verweij, G. (2017). Sizing the prize: What’s
the real value of AI for your business and how can you
capitalise? APO: Analysis & Policy Observatory.
Bughin, J., Seong, J., Manyika, J., Chui, M., and Joshi, R.
(2018). Notes from the AI frontier: Modeling the im-
pact of AI on the world economy. McKinsey Global
Institute, 4(1).
CMMI Institute (2023). CMMI V3.0.
Enholm, I. M., Papagiannidis, E., Mikalef, P., and Krogstie,
J. (2022). Artificial Intelligence and Business Value:
a Literature Review. Information Systems Frontiers,
24(5):1709–1734.
European Commission (2020). White Paper On Artificial
Intelligence - A European approach to excellence and
trust.
European Commission (2021). Laying Down Harmonised
Rules On Artificial Intelligence (Artificial Intelligence
Act) and Amending Certain Union Legislative Acts.
Proposal for a regulation of the European parliament
and of the council.
Fornasiero, R., Kiebler, L., Falsafi, M., and Sardesai, S.
(2025). Proposing a maturity model for assessing arti-
ficial intelligence and big data in the process indus-
try. International Journal of Production Research,
63(4):1235–1255.
ISO (2015a). ISO/IEC 33000 Family.
ISO (2015b). ISO/IEC 33004:2015 Information technology
— Process assessment — Requirements for process
reference, process assessment and maturity models.
ISO (2017). ISO/IEC/IEEE 12207:2017 Systems and soft-
ware engineering — Software life cycle processes.
ISO (2019). ISO/IEC 33020:2019 Information technol-
ogy — Process assessment — Process measurement
framework for assessment of process capability.
ISO (2022a). ISO/IEC 22989:2022 Information technol-
ogy — Artificial intelligence — Artificial intelligence
concepts and terminology.
ISO (2022b). ISO/IEC 23053:2022 Framework for Artifi-
cial Intelligence (AI) Systems Using Machine Learn-
ing (ML).
ISO (2023a). ISO/IEC 25010:2023 Systems and soft-
ware engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Product
quality model.
ISO (2023b). ISO/IEC 25059:2023 Software engineering
— Systems and software Quality Requirements and
Evaluation (SQuaRE) — Quality model for AI sys-
tems.
ISO (2023c). ISO/IEC 5338:2023 Information technology
— Artificial intelligence — AI system life cycle pro-
cesses.
ISO (2023d). ISO/IEC/IEEE 15288:2023 Systems and soft-
ware engineering — System life cycle processes.
Makridakis, S. (2017). The forthcoming Artificial Intelli-
gence (AI) revolution: Its impact on society and firms.
Futures, 90:46–60.
Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A.,
Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons,
T., Manyika, J., Niebles, J. C., Shoham, Y., Wald, R.,
, and Clark, J. (2024). The AI Index 2024 Annual
Report.
Oktaba, H. and Piattini, M. (2008). Software Process Im-
provement for Small and Medium Enterprises: Tech-
niques and Case Studies: Techniques and Case Stud-
ies. IGI Global.
Oviedo, J., Rodriguez, M., and Piattini, M. (2024). An En-
vironment for the Assessment of the Functional Suit-
ability of AI Systems. In 17th International Confer-
ence on the Quality of Information and Communica-
tions Technology. Accepted.
Pino, F. J., Garc
´
ıa, F., Ruiz, F., and Piattini, M. (2006).
Adaptaci
´
on de las normas iso/iec 12207: 2002 e
iso/iec 15504: 2003 para la evaluaci
´
on de la madurez
de procesos software en pa
´
ıses en desarrollo. IEEE
Latin America Transactions, 4:17–24.
Ribeiro, J., Lima, R., Eckhardt, T., and Paiva, S. (2021).
Robotic Process Automation and Artificial Intelli-
gence in Industry 4.0 - A Literature review. Procedia
Computer Science, 181:51–58.
Rodriguez, M., Verdugo, J., Pino, F., Delgado, B., and Pi-
attini, M. (2021). Software Development Process As-
sessment With MMIS v. 2, an ISO/IEC 33000-Based
Model. IT Professional, 23:17–23.
Sonntag, M., Mehmann, S., Mehmann, J., and Teuteberg,
F. (2024). Development and evaluation of a matu-
rity model for ai deployment capability of manufac-
turing companies. Information Systems Management,
42(1):37–67.
Sugali, K. (2021). Software testing: Issues and challenges
of artificial intelligence & machine learning. IJAIA.
Unterkalmsteiner, M., Gorschek, T., Islam, A. M., Cheng,
C. K., Permadi, R. B., and Feldt, R. (2011). Evalu-
ation and measurement of software process improve-
ment—a systematic literature review. IEEE Transac-
tions on Software Engineering, 38(2):398–424.
Wang, F. and Preininger, A. (2019). AI in Health: State of
the Art, Challenges, and Future Directions. Yearbook
of medical informatics, 28:16–26.
ICSOFT 2025 - 20th International Conference on Software Technologies
280