
Currently, EdgeFuzz is implemented in commodity
hardware. In the future, we have a plan to imple-
ment EdgeFuzz in Mellanox ConnectX-6, Bluefied-
2 SmartNIC, and Barefoot Tofino 2. We also want
to evaluate other protocol behaviors with different
specifications to handle the requests to extend Edge-
Fuzz towards a complete testing suite for network-
ing/distributed computing environments.
REFERENCES
Anderson, R. (2020). Security engineering: a guide to
building dependable distributed systems. John Wiley
& Sons.
Ba, J., B
¨
ohme, M., Mirzamomen, Z., and Roychoudhury,
A. (2022). s. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3255–3272.
Biswas, S., Sohel, M., Sajal, M. M., Afrin, T., Bhuiyan, T.,
and Hassan, M. M. (2018). A study on remote code
execution vulnerability in web applications. In Inter-
national conference on cyber security and computer
science (ICONCS 2018), pages 50–57.
Borrello, P., Fioraldi, A., D’Elia, D. C., Balzarotti, D.,
Querzoni, L., Giuffrida, C., et al. (2024). Predictive
context-sensitive fuzzing. In Network and Distributed
System Security (NDSS) Symposium.
Caballero, J., Yin, H., Liang, Z., and Song, D. (2007). Poly-
glot: Automatic extraction of protocol message format
using dynamic binary analysis. In Proceedings of the
14th ACM conference on Computer and communica-
tions security, pages 317–329.
De Ruiter, J. and Poll, E. (2015). Protocol state fuzzing
of {TLS} implementations. In 24th USENIX Security
Symposium (USENIX Security 15), pages 193–206.
Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J.,
Payer, M., Weaver, N., Adrian, D., Paxson, V., Bai-
ley, M., et al. (2014). The matter of heartbleed. In
Proceedings of the 2014 conference on internet mea-
surement conference, pages 475–488.
Fan, R. and Chang, Y. (2018). Machine learning for black-
box fuzzing of network protocols. In Information and
Communications Security: 19th International Con-
ference, ICICS 2017, Beijing, China, December 6-8,
2017, Proceedings 19, pages 621–632. Springer.
Gao, J., Bai, X., and Tsai, W.-T. (2011). Cloud testing-
issues, challenges, needs and practice. Software Engi-
neering: An International Journal, 1(1):9–23.
Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., and
Rieck, K. (2015). Pulsar: Stateful black-box fuzzing
of proprietary network protocols. In Security and Pri-
vacy in Communication Networks: 11th EAI Inter-
national Conference, SecureComm 2015, Dallas, TX,
USA, October 26-29, 2015, Proceedings 11, pages
330–347. Springer.
Ge, X., Yang, F., and Han, Q.-L. (2017). Distributed net-
worked control systems: A brief overview. Informa-
tion Sciences, 380:117–131.
Jiang, S., Zhang, Y., Li, J., Yu, H., Luo, L., and Sun,
G. (2024). A survey of network protocol fuzzing:
Model, techniques and directions. arXiv preprint
arXiv:2402.17394.
Juan, V., Huang, L., and Hinz, S. (2020). Pulpy. [Online].
Available: GitHub repository.
Liang, Y., Liu, S., and Hu, H. (2022). Detecting logical
bugs of {DBMS} with coverage-based guidance. In
31st USENIX Security Symposium (USENIX Security
22), pages 4309–4326.
Man
`
es, V. J., Han, H., Han, C., Cha, S. K., Egele, M.,
Schwartz, E. J., and Woo, M. (2019). The art, science,
and engineering of fuzzing: A survey. IEEE Transac-
tions on Software Engineering, 47(11):2312–2331.
Munea, T. L., Lim, H., and Shon, T. (2016). Network proto-
col fuzz testing for information systems and applica-
tions: a survey and taxonomy. Multimedia tools and
applications, 75:14745–14757.
Pham, V.-T., B
¨
ohme, M., and Roychoudhury, A. (2020).
Aflnet: a greybox fuzzer for network protocols. In
2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pages
460–465. IEEE.
Pham, V.-T., B
¨
ohme, M., Santosa, A. E., C
˘
aciulescu,
A. R., and Roychoudhury, A. (2019). Smart greybox
fuzzing. IEEE Transactions on Software Engineering,
47(9):1980–1997.
Srivastava, P. and Payer, M. (2021). Gramatron: Effective
grammar-aware fuzzing. In Proceedings of the 30th
acm sigsoft international symposium on software test-
ing and analysis, pages 244–256.
STEEN, M. and TANENBAUM, A. (2017). Distributed
systems.[sl]: Maarten van steen leiden. The Nether-
lands, pages 206–210.
T., C. (2020). DistWalk. [Online]. Available: GitHub repos-
itory.
Takanen, A., Demott, J. D., Miller, C., and Kettunen, A.
(2018). Fuzzing for software security testing and qual-
ity assurance. Artech House.
Thorpe, L. (2021). Packet courier. [Online]. Available:
GitHub repository.
Tsankov, P., Dashti, M. T., and Basin, D. (2012). Sec-
fuzz: Fuzz-testing security protocols. In 2012 7th In-
ternational Workshop on Automation of Software Test
(AST), pages 1–7. IEEE.
Yao, D., Zhang, J., Harris, I. G., and Carlsson, M. (2024).
Fuzzllm: A novel and universal fuzzing framework
for proactively discovering jailbreak vulnerabilities in
large language models. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4485–4489. IEEE.
Zhang, Z., Zhang, H., Zhao, J., and Yin, Y. (2023). A sur-
vey on the development of network protocol fuzzing
techniques. Electronics, 12(13):2904.
Zhao, X., Qu, H., Xu, J., Li, X., Lv, W., and Wang, G.-G.
(2024). A systematic review of fuzzing. Soft Comput-
ing, 28(6):5493–5522.
EdgeFuzz: A Middleware-Based Security Testing Tool for Vulnerability Discovery in Distributed Computing Applications
625