
Input: Chosen t-threshold arrays from
( f
(1)
,. . ., f
(n)
).
Output: f ∈ F
o·(o+v)
q
for i = 0 to o · (o + v) do
f [i] ← TSS.IntRecon( f
(1)
[i],. . ., f
(t)
[i])
end
return f
Algorithm 11: TSS.ArrayRecon for VT-UOV.
Additionally, we define Algorithm 12 and Algo-
rithm 13 to generate secret shares of a vector used
in VT-UOV operations and to reconstruct the vector
from its shares.
Input: Vector of Arrays f = ( f
1
,. . ., f
ℓ
).
Output: Vector shares (f
(1)
,. . .,f
(n)
) of f.
for i = 1 to ℓ do
( f
(1)
i
,. . ., f
(n)
i
) ← TSS.ArrayShare( f
i
)
// Share each array in the
vector
end
for i = 1 to n do
f
(i)
← ( f
(i)
1
,. . ., f
(i)
ℓ
) // Construct
vector shares
end
return (f
(1)
,. . .,f
(n)
)
Algorithm 12: TSS.VectorShare for VT-UOV.
Input: Chosen t-threshold vector shares from
(f
(1)
,. . .,f
(n)
).
Output: Vector f = ( f
1
,. . ., f
ℓ
).
for i = 1 to ℓ do
f
i
← TSS.PolyRecon( f
(1)
i
,. . ., f
(t)
i
)
end
return f = ( f
1
,. . ., f
ℓ
)
Algorithm 13: TSS.VectorRecon for VT-UOV.
4 CONCLUSION
In this work, we introduced VT-UOV, a Verifiable
Timed Signature scheme based on a quantum-secure
structure Salt-UOV Digital Signature Algorithm. We
successfully integrated UOV into a VTS framework
by ensuring that all key parameters, including the se-
cret key, public key, and signature, can be divided into
shares and reconstructed using Shamir’s Threshold
Secret Sharing algorithm. Additionally, we demon-
strated that for any given index, the shared secret
key can generate the corresponding shared public key
and shared signature at the same index. Despite the
challenges posed by UOV’s large parameter sizes and
complex multivariate quadratic equations, we suc-
cessfully addressed these obstacles and achieved the
desired functionality.
REFERENCES
Alagic, G., Bros, M., Ciadoux, P., Cooper, D., Dang, Q.,
Dang, T., Kelsey, J. M., Lichtinger, J., Miller, C. A.,
Moody, D., Peralta, R., Perlner, R., Robinson, A., Sil-
berg, H., Smith-Tone, D., Waller, N., and Liu, Y.-K.
(2024). Status report on the first round of the ad-
ditional digital signature schemes for the nist post-
quantum cryptography standardization process.
Beullens, W., Chen, M.-S., Ding, J., Gong, B., Kannwis-
cher, M. J., Patarin, J., Peng, B.-Y., Schmidt, D., Shih,
C.-J., Tao, C., and and, B.-Y. Y. (2023). Unbanalced
oil and vinegar. https://www.uovsig.org/.
Blum, M., De Santis, A., Micali, S., and Persiano, G.
(1991). Noninteractive zero-knowledge. SIAM Jour-
nal on Computing, 20(6):1084–1118.
Boneh, D., Lynn, B., and Shacham, H. (2001). Short sig-
natures from the weil pairing. In International confer-
ence on the theory and application of cryptology and
information security, pages 514–532. Springer.
Johnson, D., Menezes, A., and Vanstone, S. (2001). The
elliptic curve digital signature algorithm (ecdsa). In-
ternational journal of information security, 1:36–63.
Katz, J. (2010). Digital signatures, volume 1. Springer.
Kipnis, A., Patarin, J., and Goubin, L. (1999). Unbalanced
oil and vinegar signature schemes. In Stern, J., editor,
Advances in Cryptology — EUROCRYPT ’99, pages
206–222, Berlin, Heidelberg. Springer Berlin Heidel-
berg.
Rivest, R. L., Shamir, A., and Wagner, D. A. (1996). Time-
lock puzzles and timed-release crypto.
Sakumoto, K., Shirai, T., and Hiwatari, H. (2011). On prov-
able security of uov and hfe signature schemes against
chosen-message attack. In Post-Quantum Cryptog-
raphy: 4th International Workshop, PQCrypto 2011,
Taipei, Taiwan, November 29–December 2, 2011.
Proceedings 4, pages 68–82. Springer.
Schnorr, C.-P. (1991). Efficient signature generation by
smart cards. Journal of cryptology, 4:161–174.
Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.
Shor, P. W. (1999). Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332.
Thyagarajan, S. A. K., Bhat, A., Malavolta, G., D
¨
ottling, N.,
Kate, A., and Schr
¨
oder, D. (2020). Verifiable timed
signatures made practical. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1733–1750.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
618