
REFERENCES
Adjerid, I., Acquisti, A., Brandimarte, L., and Loewen-
stein, G. (2013). Sleights of privacy: Framing, disclo-
sures, and the limits of transparency. In Proceedings
of the ninth symposium on usable privacy and secu-
rity, pages 1–11.
Alfawzan, N., Christen, M., Spitale, G., and Biller-
Andorno, N. (2022). Privacy, data sharing, and data
security policies of women’s mhealth apps: Scoping
review and content analysis. JMIR mhealth uhealth
10, 5 (may 2022), e33735.
Amaral, O., Abualhaija, S., and Briand, L. (2023). Ml-
based compliance verification of data processing
agreements against GDPR. In IEEE 31st Interna-
tional Requirements Engineering Conference (RE),
pages 53–64, Germany. IEEE.
Andow, B., Mahmud, S. Y., Wang, W., Whitaker, J.,
Enck, W., Reaves, B., Singh, K., and Xie, T.
(2019). {PolicyLint}: investigating internal pri-
vacy policy contradictions on google play. In 28th
USENIX security symposium, pages 585–602, Santa
Clara,CA,USA. USENIX Association.
Andow, B., Mahmud, S. Y., Whitaker, J., Enck, W., Reaves,
B., Singh, K., and Egelman, S. (2020). Actions speak
louder than words:{Entity-Sensitive} privacy policy
and data flow analysis with {PoliCheck}. In 29th
USENIX Security Symposium, pages 985–1002, On-
line. USENIX Association.
Annas, G. J. (2003). Hipaa regulations: a new era of
medical-record privacy? New England Journal of
Medicine, 348:1486.
Antón, A. I., Earp, J. B., He, Q., Stufflebeam, W., Bolchini,
D., and Jensen, C. (2004). Financial privacy policies
and the need for standardization. IEEE Security &
privacy, 2(2):36–45.
Bui, D., Yao, Y., Shin, K. G., Choi, J.-M., and Shin, J.
(2021). Consistency analysis of data-usage purposes
in mobile apps. In Proceedings of ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 2824–2843, Republic of Korea. ACM.
Cohen, J. E. (2008). Privacy, visibility, transparency, and
exposure. The University of Chicago Law Review,
75(1):181–201.
de la Torre, L. (2018). A guide to the california consumer
privacy act of 2018. Available at SSRN 3275571.
Elluri, L., Joshi, K. P., and Kotal, A. (2020). Measuring
semantic similarity across EU GDPR regulation and
cloud privacy policies. In 2020 IEEE International
Conference on Big Data (Big Data), pages 3963–
3978. IEEE.
Erkkilä, T. (2020). Transparency in public administration.
In Oxford research encyclopedia of politics. Oxford.
Hamdani, R. E., Mustapha, M., Amariles, D. R., Trous-
sel, A., Meeùs, S., and Krasnashchok, K. (2021). A
combined rule-based and machine learning approach
for automated GDPR compliance checking. In Pro-
ceedings of the Eighteenth International Conference
on Artificial Intelligence and Law, pages 40–49, São
Paulo, Brazil.
Harkous Hamza, K. F., Lebret, R., Schaub, F., Shin, K. G.,
and Aberer, K. (2018). Polisis: Automated analysis
and presentation of privacy policies using deep learn-
ing. In 27th USENIX Security Symposium, pages 531–
548, Baltimore, MD, USA. USENIX Association.
Honnibal, M. and Montani, I. (2017). SpaCy 2: Natural lan-
guage understanding with Bloom embeddings, convo-
lutional neural networks and incremental parsing. Ac-
cessed: 2023.
Jensen, C. and Potts, C. (2004). Privacy policies as
decision-making tools: an evaluation of online pri-
vacy notices. In Proceedings of the SIGCHI confer-
ence on Human Factors in Computing Systems, pages
471–478, Vienna, Austria.
Mousavi Nejad, N., Scerri, S., and Lehmann, J. (2018).
Knight: Mapping privacy policies to GDPR. In
Knowledge Engineering and Knowledge Manage-
ment: 21st International Conference, EKAW 2018,
Nancy, France, November 12-16, 2018, Proceedings
21, pages 258–272. Springer.
Neupane, S., Tazi, F., Paudel, U., Baez, F. V., Adamjee,
M., De Carli, L., Das, S., and Ray, I. (2022). On the
data privacy, security, and risk postures of iot mobile
companion apps. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 162–
182. Springer.
Nguyen, T. T., Backes, M., Marnau, N., and Stock, B.
(2021). Share first, ask later (or never?) studying vio-
lations of {GDPR’s} explicit consent in android apps.
In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 3667–3684.
Pan, Y. and Zinkhan, G. M. (2006). Exploring the impact of
online privacy disclosures on consumer trust. Journal
of retailing, 82(4):331–338.
Parnami, A. and Lee, M. (2022). Learning from few exam-
ples: A summary of approaches to few-shot learning.
arXiv preprint arXiv:2203.04291.
Sunkle, S., Kholkar, D., and Kulkarni, V. (2015). Toward
better mapping between regulations and operations of
enterprises using vocabularies and semantic similar-
ity. Complex Systems Informatics and Modeling Quar-
terly, 5:39–60.
Tankard, C. (2016). What the GDPR means for businesses.
Network Security, 2016(6):5–8.
Tunstall, L., Reimers, N., Jo, U. E. S., Bates, L., Korat,
D., Wasserblat, M., and Pereg, O. (2022). Efficient
few-shot learning without prompts. arXiv preprint
arXiv:2209.11055.
Wilson, S., Schaub, F., Dara, A. A., Liu, F., Cherivirala, S.,
Leon, P. G., Andersen, M. S., Zimmeck, S., Sathyen-
dra, K. M., Russell, N. C., et al. (2016). The cre-
ation and analysis of a website privacy policy corpus.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1330–
1340, Berlin, Germany.
Wong, R. Y., Chong, A., and Aspegren, R. C. (2023). Pri-
vacy legislation as business risks: How GDPR and
CCPA are represented in technology companies’ in-
vestment risk disclosures. Proceedings of the ACM on
Human-Computer Interaction, 7(CSCW1):1–26.
Zaeem, R. N. and Barber, K. S. (2020). The effect of the
GDPR on privacy policies: Recent progress and fu-
ture promise. ACM Transactions on Management In-
formation Systems (TMIS), 12(1):1–20.
Privacy2Practice: Leveraging Automated Analysis for Privacy Policy Transparency and Compliance
143