
hance efficiency, decentralization, and privacy. De-
spite their promising capabilities, blockchain-enabled
CapBAC models face challenges in throughput, de-
gree of decentralization, smart contract adoption, and
privacy. Future research should focus on developing
adaptive CapBAC models tailored to dynamic envi-
ronments, investigate trust mechanisms in decentral-
ized contexts, and propose standardized metrics for
evaluating privacy and interoperability.
REFERENCES
Ahmed, S. F., Alam, M. S. B., Hoque, M., Lameesa, A.,
Afrin, S., Farah, T., Kabir, M., Shafiullah, G., and
Muyeen, S. (2023). Industrial internet of things en-
abled technologies, challenges, and future directions.
Computers and Electrical Engineering, 110:108847.
Bouras, M. A., Xia, B., Abuassba, A. O., Ning, H., and
Lu, Q. (2021). Iot-ccac: a blockchain-based consor-
tium capability access control approach for iot. PeerJ
Computer Science, 7:e455.
de Haro-Olmo, F. J., Varela-Vaca,
´
A. J., and
´
Alvarez-
Bermejo, J. A. (2020). Blockchain from the perspec-
tive of privacy and anonymisation: A systematic liter-
ature review. Sensors, 20(24):7171.
Hern
´
andez-Ramos, J. L., Jara, A. J., Marin, L., and
Skarmeta, A. F. (2013). Distributed capability-based
access control for the internet of things. Journal of
Internet Services and Information Security (JISIS),
3(3/4):1–16.
Jaidka, H., Sharma, N., and Singh, R. (2020). Evolution of
iot to iiot: Applications & challenges. In Proceedings
of the international conference on innovative comput-
ing & communications (ICICC).
Kumar, R. L., Khan, F., Kadry, S., and Rho, S. (2022). A
survey on blockchain for industrial internet of things.
Alexandria Engineering Journal, 61(8):6001–6022.
Lashkari, B. and Musilek, P. (2021). A comprehensive re-
view of blockchain consensus mechanisms. IEEE ac-
cess, 9:43620–43652.
Latif, S., Idrees, Z., e Huma, Z., and Ahmad, J. (2021).
Blockchain technology for the industrial internet of
things: A comprehensive survey on security chal-
lenges, architectures, applications, and future research
directions. Transactions on Emerging Telecommuni-
cations Technologies, 32(11):e4337.
Le, T. and Mutka, M. W. (2018). Capchain: A privacy pre-
serving access control framework based on blockchain
for pervasive environments. In 2018 IEEE Inter-
national Conference on Smart Computing (SMART-
COMP), pages 57–64. IEEE.
Lesavre, L., Varin, P., and Yaga, D. (2020). Blockchain
networks: Token design and management overview.
Technical report, National Institute of Standards and
Technology.
Li, C., Li, F., Yin, L., Luo, T., and Wang, B. (2021). A
blockchain-based iot cross-domain delegation access
control method. Security and Communication Net-
works, 2021(1):3091104.
Liao, J. and Wu, Q. (2023). Dtsac: Smart contract-based ac-
cess control with delegation and trust management. In
2023 IEEE 29th International Conference on Parallel
and Distributed Systems (ICPADS), pages 639–644.
IEEE.
Liu, Y., Lu, Q., Chen, S., Qu, Q., O’Connor, H., Choo, K.-
K. R., and Zhang, H. (2021). Capability-based iot ac-
cess control using blockchain. Digital Communica-
tions and Networks, 7(4):463–469.
Nakamura, S., Enokido, T., and Takizawa, M. (2021).
Implementation and evaluation of the information
flow control for the internet of things. Concur-
rency and Computation: Practice and Experience,
33(19):e6311.
Nakamura, Y., Zhang, Y., Sasabe, M., and Kasahara,
S. (2019). Capability-based access control for the
internet of things: An ethereum blockchain-based
scheme. In 2019 IEEE global communications con-
ference (GLOBECOM), pages 1–6. IEEE.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I.,
Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tet-
zlaff, J. M., Akl, E. A., Brennan, S. E., et al. (2021).
The prisma 2020 statement: an updated guideline for
reporting systematic reviews. Bmj, 372.
Pal, S. and Jadidi, Z. (2021). Analysis of security issues and
countermeasures for the industrial internet of things.
Applied Sciences, 11(20):9393.
Pinjala, S. K. and Sivalingam, K. M. (2019). Dcaci: A de-
centralized lightweight capability based access con-
trol framework using iota for internet of things. In
2019 IEEE 5th World Forum on Internet of Things
(WF-IoT), pages 13–18. IEEE.
Pipyros, K., Thraskias, C., Mitrou, L., Gritzalis, D., and
Apostolopoulos, T. (2018). A new strategy for im-
proving cyber-attacks evaluation in the context of
tallinn manual. Computers & Security, 74:371–383.
Polat, B. and G
¨
ocmenoglu, I. (2022). Comparison between
consensus algorithms in an iiot network: Analysis of
proof of work, proof of stake and proof of authentica-
tion.
Sun, S., Chen, S., Du, R., Li, W., and Qi, D. (2019).
Blockchain based fine-grained and scalable access
control for iot security and privacy. In 2019 IEEE
Fourth International Conference on Data Science in
Cyberspace (DSC), pages 598–603. IEEE.
Truong, H., Hern
´
andez-Ramos, J. L., Martinez, J. A.,
Bernal Bernabe, J., Li, W., Marin Frutos, A., and
Skarmeta, A. (2022). [retracted] enabling decen-
tralized and auditable access control for iot through
blockchain and smart contracts. Security and Com-
munication Networks, 2022(1):1828747.
Wang, Q., Zhu, X., Ni, Y., Gu, L., and Zhu, H. (2020).
Blockchain for the iot and industrial iot: A review.
Internet of Things, 10:100081.
Xu, R., Chen, Y., Blasch, E., and Chen, G. (2018). Blend-
cac: A blockchain-enabled decentralized capability-
based access control for iots. In 2018 IEEE Inter-
national conference on Internet of Things and IEEE
green computing and communications and IEEE cy-
ber, physical and social computing and IEEE Smart
Data, pages 1027–1034. IEEE.
Bolstering IIoT Resilience: The Synergy of Blockchain and CapBAC
131