
Li, Y., Hu, J., Zhang, X.-M., Song, Z., and Yung, M.-H.
(2019). Variational quantum simulation for quantum
chemistry. Advanced Theory and Simulations, 2(4).
Mitarai, K., Suzuki, Y., Mizukami, W., Nakagawa, Y. O.,
and Fujii, K. (2022). Quadratic clifford expansion
for efficient benchmarking and initialization of vari-
ational quantum algorithms. Physical Review Re-
search, 4(3).
Mitsuda, N., Ichimura, T., Nakaji, K., Suzuki, Y., Tanaka,
T., Raymond, R., et al. (2024). Approximate complex
amplitude encoding algorithm and its application to
data classification problems. Phys. Rev. A, 109.
Mustafa, H., Morapakula, S. N., Jain, P., and Ganguly, S.
(2022). Variational quantum algorithms for chemical
simulation and drug discovery. In International Con-
ference on Trends in Quantum Computing and Emerg-
ing Business Technologies (TQCEBT), pages 1–8.
Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T.,
Tanaka, T., et al. (2022). Approximate amplitude en-
coding in shallow parameterized quantum circuits and
its application to financial market indicators. Physical
Review Research, 4(2).
Pan, V. Y. and Chen, Z. Q. (1999). The complexity of
the matrix eigenproblem. In Proceedings of the 31
st
Annual ACM Symposium on Theory of Computing,
STOC ’99, page 507–516, New York, NY, USA.
ACM.
Pellow-Jarman, A., Sinayskiy, I., Pillay, A., and Petruc-
cione, F. (2021). A comparison of various classi-
cal optimizers for a variational quantum linear solver.
Quantum Information Processing, 20(6).
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., et al. (2014). A variational eigen-
value solver on a photonic quantum processor. Nature
communications, 5(1):4213.
Powell, M. J. D. (1994). A Direct Search Optimiza-
tion Method That Models the Objective and Con-
straint Functions by Linear Interpolation, pages 51–
67. Springer Netherlands.
Preskill, J. (2018). Quantum computing in the NISQ era
and beyond. Quantum, 2.
Qiskit Contributors (2023). Qiskit: An open-source frame-
work for quantum computing.
Quarteroni, A., Sacco, R., and Saleri, F. (2006). Numerical
mathematics, volume 37. Springer Science & Busi-
ness Media.
Ravi, G. S., Gokhale, P., Ding, Y., Kirby, W., Smith, K.,
Baker, J. M., et al. (2022). CAFQA: A classical sim-
ulation bootstrap for variational quantum algorithms.
In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), page
15–29. ACM.
Rudolph, M. S., Miller, J., Motlagh, D., Chen, J., Acharya,
A., and Perdomo-Ortiz, A. (2023). Synergistic pre-
training of parametrized quantum circuits via tensor
networks. Nature Communications, 14(1).
Sack, S. H. and Serbyn, M. (2021). Quantum annealing ini-
tialization of the quantum approximate optimization
algorithm. quantum, 5.
Schuld, M. and Petruccione, F. (2018). Supervised learning
with quantum computers, volume 17. Springer.
Shaydulin, R., Lotshaw, P. C., Larson, J., Ostrowski, J., and
Humble, T. S. (2023). Parameter transfer for quantum
approximate optimization of weighted maxcut. ACM
Transactions on Quantum Computing, 4(3).
Shende, V., Bullock, S., and Markov, I. (2006). Syn-
thesis of quantum-logic circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 25(6):1000–1010.
Skogh, M., Leinonen, O., Lolur, P., and Rahm, M. (2023).
Accelerating variational quantum eigensolver conver-
gence using parameter transfer. Electronic Structure,
5(3).
Tao, Z., Wu, J., Xia, Q., and Li, Q. (2023). LAWS:
Look around and warm-start natural gradient descent
for quantum neural networks. In International Con-
ference on Quantum Software (QSW), pages 76–82.
IEEE.
Tate, R., Farhadi, M., Herold, C., Mohler, G., and Gupta,
S. (2023). Bridging classical and quantum with sdp
initialized warm-starts for qaoa. ACM Transactions
on Quantum Computing, 4(2).
Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y.,
et al. (2022). The variational quantum eigensolver:
A review of methods and best practices. Physics Re-
ports, 986:1–128.
Truger, F., Barzen, J., Bechtold, M., Beisel, M., Leymann,
F., Mandl, A., et al. (2024). Warm-starting and quan-
tum computing: A systematic mapping study. ACM
Comput. Surv., 56(9).
Truger, F. and Obst, J. (2024). WS-VQE-prototype GitHub
Repository. https://github.com/UST-QuAntiL/
WS-VQE-prototype.
Verdon, G., Broughton, M., McClean, J. R., Sung, K. J.,
Babbush, R., Jiang, Z., et al. (2019). Learning to learn
with quantum neural networks via classical neural net-
works.
Vietz, D., Barzen, J., Leymann, F., Weder, B., and Yus-
supov, V. (2021). An Exploratory Study on the
Challenges of Engineering Quantum Applications in
the Cloud. In Proceedings of the 2
nd
Quantum
Software Engineering and Technology Workshop (Q-
SET). CEUR Workshop Proceedings.
Wilson, M., Stromswold, R., Wudarski, F., Hadfield, S.,
Tubman, N. M., and Rieffel, E. G. (2021). Optimiz-
ing quantum heuristics with meta-learning. Quantum
Machine Intelligence, 3:1–14.
Zhang, Q., Liu, Q., and Zhou, Y. (2024). Minimal-clifford
shadow estimation by mutually unbiased bases. Phys.
Rev. Appl., 21.
Zhang, Z.-J., Kyaw, T. H., Kottmann, J. S., Degroote, M.,
and Aspuru-Guzik, A. (2021). Mutual information-
assisted adaptive variational quantum eigensolver.
Quantum Science and Technology, 6(3).
IQSOFT 2025 - 1st International Conference on Quantum Software
26