
such as news cycles and electoral milestones, played
a key role in amplifying echo chamber dynamics.
Overall, the visual methods developed in this
study offer visual methods for understanding the com-
plexities of online political discussions and the for-
mation of echo chambers. The case study provides
important insights into the impact of the 2023 gen-
eral election in Thailand on online community dy-
namics. This work lays the foundation for future re-
search and applications in visualizing and analyzing
network-based social phenomena in the context of po-
litical communication.
REFERENCES
Alatawi, F., Sheth, P., and Liu, H. (2023). Quantifying the
echo chamber effect: An embedding distance-based
approach.
Barber
´
a, P., Jost, J. T., Nagler, J., Tucker, J. A., and Bon-
neau, R. (2015). Tweeting from left to right. Psycho-
logical Science, 26:1531 – 1542.
Botte, N., Ryckebusch, J., and Rocha, L. E. (2022). Cluster-
ing and stubbornness regulate the formation of echo
chambers in personalised opinion dynamics. Phys-
ica A: Statistical Mechanics and its Applications,
599:127423.
Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrocioc-
chi, W., and Starnini, M. (2021). The echo chamber
effect on social media. Proceedings of the National
Academy of Sciences, 118(9):e2023301118.
Conover, M., Ratkiewicz, J., Francisco, M., Gonc¸alves, B.,
Menczer, F., and Flammini, A. (2011). Political polar-
ization on twitter.
Cota, W., Ferreira, S., Pastor-Satorras, R., and Starnini, M.
(2019). Quantifying echo chamber effects in infor-
mation spreading over political communication net-
works.
Diehl, A., Hundt, M., Haussler, J., Seebacher, D., Chen,
S., Cilasun, N., Keim, D., and Shreck, T. (2018). So-
cialocean: Visual analysis and characterization of so-
cial media bubbles. pages 1–11.
Goel, A., Ma, K. T., and Tan, C. (2019). An end-to-end net-
work for generating social relationship graphs. 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11178–11187.
Goodreau, S. M., Kitts, J. A., and Morris, M. M. (2009).
Birds of a feather, or friend of a friend? using expo-
nential random graph models to investigate adolescent
social networks*. Demography, 46:103–125.
Guo, L., Rohde, J. A., and Wu, H. D. (2018). Who is re-
sponsible for twitter’s echo chamber problem? evi-
dence from 2016 u.s. election networks. Information,
Communication & Society, 23:234 – 251.
Henry, N., Fekete, J.-D., and McGuffin, M. J. (2007). Node-
trix: a hybrid visualization of social networks. IEEE
Transactions on Visualization and Computer Graph-
ics, 13(6):1302–1309.
Hoque, E. and Carenini, G. (2014). Convis: A visual
text analytic system for exploring blog conversations.
Computer Graphics Forum, 33(3):221–230.
Jiang, B., Karami, M., Cheng, L., Black, T., and Liu, H.
(2021). Mechanisms and attributes of echo chambers
in social media.
Lowphansirikul, L., Polpanumas, C., Jantrakulchai, N.,
and Nutanong, S. (2021). Wangchanberta: Pretrain-
ing transformer-based thai language models. ArXiv,
abs/2101.09635.
Markgraf, M. and Schoch, M. (2019). Quantification of
echo chambers: a methodological framework consid-
ering multi-party systems. In European Conference
on Information Systems.
Mcpherson, M., Smith-Lovin, L., and Cook, J. (2001).
Birds of a feather: Homophily in social networks. An-
nual Review of Sociology, 27:415–.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Conference on Empirical Methods in Natural Lan-
guage Processing.
Thomas, J. J. and Cook, K. A. (2005). Illuminating the
path: The research and development agenda for visual
analytics.
Unerman, J. (2020). Risks from self-referential peer review
echo chambers developing in research fields: 2018
keynote address presented at the british accounting re-
view 50th anniversary celebrations, british account-
ing and finance association annual conference, lon-
don. The British Accounting Review, 52(5):100910.
van der Maaten, L. and Hinton, G. (2008). Viualizing data
using t-sne. Journal of Machine Learning Research,
9:2579–2605.
Vicario, M. D., Bessi, A., Zollo, F., Petroni, F., Scala,
A., Caldarelli, G., Stanley, H. E., and Quattrocioc-
chi, W. (2016). The spreading of misinformation on-
line. Proceedings of the National Academy of Sci-
ences, 113(3):554–559.
von Landesberger, T., Kuijper, A., Schreck, T., Kohlham-
mer, J., van Wijk, J., Fekete, J.-D., and Fellner, D.
(2011). Visual analysis of large graphs: State-of-the-
art and future research challenges. Computer Graph-
ics Forum, 30(6):1719–1749.
Yang, T., Maj
´
o-V
´
azquez, S., Nielsen, R. K., and Gonz
´
alez-
Bail
´
on, S. (2020). Exposure to news grows less
fragmented with an increase in mobile access. Pro-
ceedings of the National Academy of Sciences,
117(46):28678–28683.
Visual Methods for Network Analytics of Echo Chamber: A Case Study of Thailand’s General Election 2023
381