
This integration of AI-driven ETL modeling could
significantly improve ETL design, making it more
flexible, automated, and easier to maintain over time.
ACKNOWLEDGEMENTS
This work has been supported by national funds
through FCT - Fundac¸
˜
ao para a Ci
ˆ
encia e Tec-
nologia through projects UIDB/04728/2020 and
UIDP/04728/2020.
REFERENCES
Aagesen, G. and Krogstie, J. (2015). BPMN 2.0 for Mod-
eling Business Processes, pages 219–250. Springer
Berlin Heidelberg.
Akkaoui, Z. E. and Zimanyi, E. (2009). Defining etl worfk-
lows using bpmn and bpel. In Proceeding of the ACM
twelfth international workshop on Data warehousing
and OLAP DOLAP 09, pages 41–48. ACM.
Biswas, N., Chattapadhyay, S., Mahapatra, G., Chatterjee,
S., and Mondal, K. C. (2019). A new approach for
conceptual extraction-transformation-loading process
modeling. International Journal of Ambient Comput-
ing and Intelligence, 10:30–45.
Biswas, N., Chattopadhyay, S., and Mahapatra, G. (2017).
Sysml based conceptual etl process modeling. In
International Conference on Computational Intel-
ligence, Communications, and Business Analytics,
pages 242–255. Springer Singapore.
Dayal, U., Castellanos, M., Simitsis, A., and Wilkinson,
K. (2009). Data integration flows for business in-
telligence. In Proceedings of the 12th International
Conference on Extending Database Technology: Ad-
vances in Database Technology, pages 1–11. ACM.
Dupor, S. and Jovanovi, V. (2014). An approach to concep-
tual modelling of etl processes. In 37th International
Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO).
IEEE.
Inmon, B. (2016). Data Lake Architecture: Designing the
Data Lake and Avoiding the Garbage Dump. Technics
Publications; 1st edition.
Janssen, M., van der Voort, H., and Wahyudi, A. (2017).
Factors influencing big data decision-making quality.
Journal of Business Research, 70:338–345.
Kimball, R. and Caserta, J. (2004). The Data Warehouse
ETL Toolkit: Practical Techniques for Extracting,
Cleaning, Conforming, and Delivering Data. John
Wiley & Sons, Inc.
Lenzerini, M. (2002). Data integration. In Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
233–246. ACM.
Munappy, A. R., Bosch, J., and Olsson, H. H. (2020). Data
Pipeline Management in Practice: Challenges and
Opportunities, pages 168–184. Springer-Verlag.
Nwokeji, J. C. and Matovu, R. (2021). A Systematic Liter-
ature Review on Big Data Extraction, Transformation
and Loading (ETL), pages 308–324. Springer, Cham.
Oliveira, B., Oliveira, O., and Belo, O. (2021). Using bpmn
for etl conceptual modelling: A case study. In Van-
DerAalst, W., editor, Proceedings of the 10th Interna-
tional Conference on Data Science, Technology and
Applications (DATA), pages 267–274. SCITEPRESS.
Citations/Indexing: crossref, dblp, scopus: 0, wos: 0.
Oliveira, B., Santos, V., Gomes, C., Marques, R., and
Belo, O. (2015). Conceptual-physical bridging - from
bpmn models to physical implementations on ket-
tle. In Daniel, F. and Zugal, S., editors, CEUR
Workshop Proceedings, volume 1418, pages 55–59.
CEUR-WS.org.
Prakash, G. H. and Rangdale, S. (2017). Etl data con-
version: Extraction, transformation and loading data
conversion. International Journal of Engineering and
Computer Science, 6:22545–22550.
Raj, A., Bosch, J., Olsson, H. H., and Wang, T. J. (2020).
Modelling data pipelines. In 46th Euromicro Confer-
ence on Software Engineering and Advanced Applica-
tions, SEAA, pages 13–20. IEEE.
Silver, B. (2011). Bpmn Method and Style: A Levels-Based
Methodology for Bpm Process Modeling and Improve-
ment Using Bpmn 2.0. Cody-Cassidy Press, second
edition edition.
Soffer, P., Kaner, M., and Wand, Y. (2012). Towards Un-
derstanding the Process of Process Modeling: Theo-
retical and Empirical Considerations, pages 357–369.
Springer, Berlin, Heidelberg.
Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., and Yahia,
S. B. (2019). Data quality in etl process: A prelim-
inary study. Procedia Computer Science, 159:676–
687.
Trujillo and Luj
´
an-Mora, S. (2003). A uml based approach
for modeling etl processes in data warehouses. Con-
ceptual Modeling - ER 2003 - Lecture Notes in Com-
puter Science, 2813:307–320.
Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.,
and Skiadopoulos, S. (2005). A generic and customiz-
able framework for the design of etl scenarios. Infor-
mation Systems, 30:492–525.
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed,
E., Anuar, N. B., and Vasilakos, A. V. (2016). Big
data: From beginning to future. International Journal
of Information Management, 36:1231–1247.
Business Process Modeling Techniques for Data Integration Conceptual Modeling
169