
Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A
density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, pages
226–231. AAAI Press.
Gan, J. and Tao, Y. (2015). DBSCAN revisited: Mis-claim,
un-fixability, and approximation. In SIGMOD Con-
ference, pages 519–530. ACM.
Guan, S. and Loew, M. H. (2022). A distance-based sepa-
rability measure for internal cluster validation. Int. J.
Artif. Intell. Tools, 31(7):2260005:1–2260005:23.
Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001). On
clustering validation techniques. J. Intell. Inf. Syst.,
17:107–145.
Halkidi, M. and Vazirgiannis, M. (2001). Clustering valid-
ity assessment: Finding the optimal partitioning of a
data set. In ICDM, pages 187–194. IEEE Computer
Society.
Halkidi, M., Vazirgiannis, M., and Hennig, C. (2015).
Method-independent indices for cluster validation and
estimating the number of clusters. In Handbook
of cluster analysis, pages 616–639. Chapman and
Hall/CRC.
Hassan, B. A., Tayfor, N. B., Hassan, A. A., Ahmed, A. M.,
Rashid, T. A., and Abdalla, N. N. (2024). From a-to-z
review of clustering validation indices. Neurocomput-
ing, 601:128198.
Hu, L. and Zhong, C. (2019). An internal validity index
based on density-involved distance. IEEE Access,
7:40038–40051.
Jahn, P., Frey, C. M. M., Beer, A., Leiber, C., and Seidl, T.
(2024). Data with density-based clusters: A generator
for systematic evaluation of clustering algorithms. In
ECML/PKDD (7), volume 14947 of Lecture Notes in
Computer Science, pages 3–21. Springer.
Kaufman, L. and Rousseeuw, P. J. (1990). Partitioning
Around Medoids (Program PAM), chapter 2, pages
68–125. John Wiley & Sons, Ltd.
Li, W. and Zhou, Z. (2023). Ac: A data generator for eval-
uation of clustering. Authorea Preprints.
Lim, A., Rodrigues, B., Wang, F., and Xu, Z. (2005). k-
center problems with minimum coverage. Theo. Com-
put. Sci., 332(1-3):1–17.
Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., and Wu, S.
(2013). Understanding and enhancement of internal
clustering validation measures. IEEE Trans. Cybern.,
43(3):982–994.
McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: Hi-
erarchical density based clustering. J. Open Source
Softw., 2(11):205.
McQueen, J. (1967). Some methods for classification and
analysis of multivariate observations. In Proc. Fifth
Berkeley Symposium on Mathematical Statistics and
Probability, 1967, pages 281–297.
Moulavi, D., Jaskowiak, P. A., Campello, R. J. G. B.,
Zimek, A., and Sander, J. (2014). Density-based clus-
tering validation. In SDM, pages 839–847. SIAM.
Nguyen, X. V., Epps, J., and Bailey, J. (2009). Informa-
tion theoretic measures for clusterings comparison: is
a correction for chance necessary? In ICML, volume
382 of ACM International Conference Proceeding Se-
ries, pages 1073–1080. ACM.
Parsons, L., Haque, E., and Liu, H. (2004). Subspace clus-
tering for high dimensional data: a review. SIGKDD
Explor., 6(1):90–105.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12:2825–2830.
Rojas Thomas, J. C. and Santos Pe
˜
nas, M. (2021). New
internal clustering validation measure for contigu-
ous arbitrary-shape clusters. Int. J. Intell. Syst.,
36(10):5506–5529.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis. J.
Comput. Appl. Math., 20:53–65.
Ruspini, E. H., Bezdek, J. C., and Keller, J. M. (2019).
Fuzzy clustering: A historical perspective. IEEE
Comput. Intell. Mag., 14(1):45–55.
Schlake, G. S. and Beecks, C. (2023). Towards automated
clustering. In IEEE Big Data, pages 6268–6270.
IEEE.
Schlake, G. S. and Beecks, C. (2024a). The skyline operator
to find the needle in the haystack for automated clus-
tering. In IEEE Big Data, pages 6117–6122. [IEEE.
Schlake, G. S. and Beecks, C. (2024b). Validating arbi-
trary shaped clusters - A survey. In DSAA, pages 1–12.
IEEE.
Schlake, G. S., Pernklau, M., and Beecks, C. (2024). Au-
tomated exploratory clustering. In IEEE Big Data,
pages 5711–5720. IEEE.
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., and Xu, X.
(2017). DBSCAN revisited, revisited: why and how
you should (still) use DBSCAN. TODS, 42(3):1–21.
S¸enol, A. (2022). VIASCKDE index: A novel internal clus-
ter validity index for arbitrary-shaped clusters based
on the kernel density estimation. Comput. Intell. Neu-
rosci., 2022.1:4059302.
von Luxburg, U., Williamson, R. C., and Guyon, I. (2012).
Clustering: Science or art? In ICML Unsupervised
and Transfer Learning, volume 27 of JMLR Proceed-
ings, pages 65–80. JMLR.org.
Ward Jr, J. H. (1963). Hierarchical grouping to optimize an
objective function. JASA, 58(301):236–244.
Xie, J., Xiong, Z., Dai, Q., Wang, X., and Zhang, Y. (2020).
A new internal index based on density core for clus-
tering validation. Inf. Sci., 506:346–365.
Arbitrary Shaped Clustering Validation on the Test Bench
373