
REFERENCES
Abdalkareem, R., Shihab, E., and Rilling, J. (2017). On
code reuse from stackoverflow: An exploratory study
on android apps. Information and Software Technol-
ogy, 88:148–158.
Akuthota, V., Kasula, R., Sumona, S., Mohiuddin, M.,
Reza, M., and Rahman, M. (2023). Vulnerability de-
tection and monitoring using llm. In Proceedings of
WIE and WIECON-ECE, pages 309–314. IEEE.
Alon, U., Brody, S., Levy, O., and Yahav, E.
(2018). code2seq: Generating sequences from
structured representations of code. arXiv preprint
arXiv:1808.01400.
Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019).
code2vec: Learning distributed representations of
code. Proceedings of PACMPL, 3(POPL):1–29.
Alqaradaghi, M. and Kozsik, T. (2022). Inferring the best
static analysis tool for null pointer dereference in java
source code.
Bilgin, Z., Ersoy, M., Soykan, E., Tomur, E., C¸ omak, P.,
and Karac¸ay, L. (2020). Vulnerability prediction from
source code using machine learning. In IEEE Access,
pages 150672–150684. IEEE.
Bojanova, I. and Galhardo, C. (2021). Classifying memory
bugs using bugs framework approach. In Proceedings
of COMPSAC, pages 1157–1164. IEEE.
Byun, M., Lee, Y., and Choi, J. (2020a). Analysis of soft-
ware weakness detection of cbmc based on cwe. In
Proceedings of ICACT, pages 171–175. IEEE.
Byun, M., Lee, Y., and Choi, J. (2020b). Analysis of soft-
ware weakness detection of cbmc based on cwe. In
Proceedings of ICACT, pages 171–175. IEEE.
Camara, R. C., Cuzzocrea, A., Grasso, G. M., Leung, C. K.,
Powell, S. B., Souza, J., and Tang, B. (2018). Fuzzy
logic-based data analytics on predicting the effect of
hurricanes on the stock market. In Proceedings of
FUZZ-IEEE, pages 1–8. IEEE.
Chen, T. (2015). Xgboost: extreme gradient boosting. In
R package version 0.4-2, pages 1–4. R Foundation for
Statistical Computing.
Choi, Y. and Kwon, Y. (2022). An assessment of graph
neural networks for detecting pointer and type errors.
In Proceedings of ICTC, pages 1167–1171. IEEE.
CWE Ranking (2020). https://cwe.mitre.org/top25/archive/
2020/2020 cwe top25.html. Accessed 10 April 2024.
Gotovchits, I., Van Tonder, R., and Brumley, D. (2018).
Saluki: finding taint-style vulnerabilities with static
property checking. In Proceedings of BAR.
Greff, K., Srivastava, R., Koutn
´
ık, J., Steunebrink, B.,
and Schmidhuber, J. (2016). Lstm: A search space
odyssey. In IEEE Transactions on Neural Networks
and Learning Systems, pages 2222–2232. IEEE.
Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and
Yin, J. (2022). Unixcoder: Unified cross-modal
pre-training for code representation. arXiv preprint
arXiv:2203.03850.
Howlader, P., Pal, K. K., Cuzzocrea, A., and Kumar, S.
D. M. (2018). Predicting facebook-users’ personality
based on status and linguistic features via flexible re-
gression analysis techniques. In Proceedings of SAC,
pages 339–345. ACM.
Jang, B., Kim, M., Harerimana, G., and Kim, J. (2019).
Q-learning algorithms: A comprehensive classifica-
tion and applications. In IEEE Access, pages 133653–
133667. IEEE.
Jin, W., Ullah, S., Yoo, D., and Oh, H. (2021). Npdhunter:
Efficient null pointer dereference vulnerability detec-
tion in binary. IEEE Access, 9:90153–90169.
Koroteev, M. (2021a). Bert: a review of applications in nat-
ural language processing and understanding. In arXiv
preprint arXiv:2103.11943, pages 1–14. arXiv.
Koroteev, M. (2021b). Bert: a review of applications in nat-
ural language processing and understanding. In arXiv
preprint arXiv:2103.11943, pages 1–14. arXiv.
LaValley, M. (2008). Logistic regression. In Circulation,
pages 2395–2399. Lippincott Williams & Wilkins.
Leung, C. K., Braun, P., and Cuzzocrea, A. (2019). Ai-
based sensor information fusion for supporting deep
supervised learning. Sensors, 19(6):1345.
Li, K. and Sun, D. (2025). A global-features and local-
features-jointly fused deep semantic learning frame-
work for error detection of machine translation. J. Cir-
cuits Syst. Comput., 34(1):2550025:1–2550025:22.
Lu, G., Ju, X., Chen, X., Pei, W., and Cai, Z. (2024).
Grace: Empowering llm-based software vulnerability
detection with graph structure and in-context learning.
Journal of Systems and Software, 212:112031.
Lugosch, L. P. (2018). Learning algorithms for error cor-
rection. McGill University (Canada).
Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. In Proceed-
ings of EMNLP, pages 1532–1543. Association for
Computational Linguistics.
Pratt, H., Williams, B., Coenen, F., and Zheng, Y. (2017).
Fcnn: Fourier convolutional neural networks. In Pro-
ceedings of ECML PKDD, pages 786–798. Springer
International Publishing.
Sandoval, G., Pearce, H., Nys, T., Karri, R., Garg, S., and
Dolan-Gavitt, B. (2023). Lost at c: A user study on
the security implications of large language model code
assistants. In Proceedings of USENIX SS, pages 2205–
2222.
Security Importance (2024). https://moldstud.com. Ac-
cessed 5 April 2024.
Tanwar, A. et al. (2020). Predicting vulnerability in large
codebases with deep code representation. In arXiv
preprint arXiv:2004.12783, pages 1–20. arXiv.
VDISC Dataset (2024). https://osf.io/d45bw/. Accessed 10
April 2024.
Wang, J., Huang, Z., Liu, H., Yang, N., and Xiao, Y. (2023).
Defecthunter: A novel llm-driven boosted-conformer-
based code vulnerability detection mechanism. arXiv
preprint arXiv:2309.15324.
Wang, Y., Wang, W., Joty, S., and Hoi, S. (2022). Codet5:
Identifier-aware unified pre-trained model for code
understanding and generation. Proceedings of ACL.
Zagane, M., Abdi, M., and Alenezi, M. (2020). Deep learn-
ing for software vulnerabilities detection using code
metrics. In IEEE Access, pages 74562–74570. IEEE.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
576