
overflows before reaching the optimal solution. Addi-
tionally, we aim to extend this approach to other com-
binatorial optimization problems, broadening the ap-
plicability of quantum-inspired tensor network meth-
ods in this domain, and study its possible implementa-
tion in quantum hardware to improve its performance.
ACKNOWLEDGMENT
The research has been funded by the Ministry of
Science and Innovation and CDTI under ECOSIS-
TEMAS DE INNOVACI
´
ON project ECO-20241017
(EIFEDE) and ICECyL (Junta de Castilla y Le
´
on) un-
der project CCTT5/23/BU/0002 (QUANTUMCRIP).
This proyect has been funded by the Spanish Min-
istry of Science, Innovation and Universities under
the project PID2023-149511OB-I00.
REFERENCES
Ali, A. M. (2025). Explicit solution equation for every com-
binatorial problem via tensor networks: Melocoton.
Ali, A. M., de Leceta, A. M. F., and Rubio, J. L. (2024a).
Anomaly detection from a tensor train perspective.
Ali, A. M., Delgado, I. P., and de Leceta, A. M. F. (2024b).
Traveling salesman problem from a tensor networks
perspective.
Ali, A. M., Delgado, I. P., Markaida, B. G., and de Leceta,
A. M. F. (2024c). Task scheduling optimization from
a tensor network perspective.
Ali, A. M., Delgado, I. P., Roura, M. R., and de Leceta, A.
M. F. (2024d). Polynomial-time solver of tridiagonal
qubo and qudo problems with tensor networks.
Bateni, M., Hajiaghayi, M., Seddighin, S., and Stein, C.
(2018). Fast algorithms for knapsack via convolution
and prediction. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing,
STOC 2018, page 1269–1282, New York, NY, USA.
Association for Computing Machinery.
Benson, B. M., Ingman, V. M., Agarwal, A., and Keinan, S.
(2023). A cqm-based approach to solving a combina-
torial problem with applications in drug design.
Biamonte, J. (2020). Lectures on quantum tensor networks.
Biamonte, J. and Bergholm, V. (2017). Tensor networks in
a nutshell.
Dauz
`
ere-P
´
er
`
es, S., Ding, J., Shen, L., and Tamssaouet, K.
(2024). The flexible job shop scheduling problem: A
review. European Journal of Operational Research,
314(2):409–432.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1):269–
271.
Egor, B., Egor, G., and Daria, L. (2022). Two heuristics for
one of bin-packing problems. IFAC-PapersOnLine,
55(10):2575–2580. 10th IFAC Conference on Man-
ufacturing Modelling, Management and Control MIM
2022.
Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quan-
tum approximate optimization algorithm.
Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps
and their uses in improved network optimization algo-
rithms. J. ACM, 34(3):596–615.
Glover, F., Kochenberger, G., and Du, Y. (2019). A tutorial
on formulating and using qubo models.
Golub, G. and Kahan, W. (1965). Calculating the singular
values and pseudo-inverse of a matrix. Journal of the
Society for Industrial and Applied Mathematics Series
B Numerical Analysis, 2(2):205–224.
Gutin, G. and Yeo, A. (2007). The greedy algorithm for
the symmetric tsp. Algorithmic Operations Research,
2(1).
Hao, T., Huang, X., Jia, C., and Peng, C. (2022). A
quantum-inspired tensor network algorithm for con-
strained combinatorial optimization problems. Fron-
tiers in Physics, 10.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107.
Katangur, A., Pan, Y., and Fraser, M. (2002). Message rout-
ing and scheduling in optical multistage networks us-
ing simulated annealing. In Proceedings 16th Inter-
national Parallel and Distributed Processing Sympo-
sium, pages 8 pp–.
Korte, B. and Vygen, J. (2000). Bin-Packing, pages 407–
422. Springer Berlin Heidelberg, Berlin, Heidelberg.
Korte, B. and Vygen, J. (2008). The Traveling Salesman
Problem, pages 527–562. Springer Berlin Heidelberg,
Berlin, Heidelberg.
Laporte, G. (1992). The traveling salesman problem: An
overview of exact and approximate algorithms. Eu-
ropean Journal of Operational Research, 59(2):231–
247.
Lenstra, J. K. (1992). Job shop scheduling. In Akg
¨
ul, M.,
Hamacher, H. W., and T
¨
ufekc¸i, S., editors, Combina-
torial Optimization, pages 199–207, Berlin, Heidel-
berg. Springer Berlin Heidelberg.
Mathews, G. B. (1896). On the partition of numbers.
Proceedings of the London Mathematical Society, s1-
28(1):486–490.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., Aspuru-Guzik, A., and O’Brien,
J. L. (2014). A variational eigenvalue solver on a pho-
tonic quantum processor. Nature Communications,
5(1):4213.
Pilcher, T. (2023). A self-adaptive genetic algorithm for the
flying sidekick travelling salesman problem.
Qing, Y., Li, K., Zhou, P.-F., and Ran, S.-J. (2024). Com-
pressing neural network by tensor network with expo-
nentially fewer variational parameters.
Wang, B. and Dong, H. (2024). Bin packing optimization
via deep reinforcement learning.
Wang, J., Roberts, C., Vidal, G., and Leichenauer, S.
(2020). Anomaly detection with tensor networks.
CoRR, abs/2006.02516.
IQSOFT 2025 - 1st International Conference on Quantum Software
88