open-source software for monitoring changes in the
surface area of large glaciers, aligning with the
primary goal of demonstrating the feasibility of
accessible and cost-effective approaches to glacier
monitoring.
REFERENCES
Ashraf, A., Rustam, M., Khan, S.I., Adnan, M., Naz, R,
2016: Chapter 4 Remote Sensing of the Glacial
Environment Influenced by Climate Change,
Environmental Applications of Remote Sensing, edited
by Maged Marghany, 99-129.
Bolch, T., Menounos, B., & Wheate, R. (2010). Landsat-
based inventory of glaciers in western Canada, 1985–
2005. Remote Sensing of Environment, 114(1), 127–
137. doi:10.1016/j.rse.2009.08.015
Burns, P., Nolin, A., 2014: Using atmospherically-
corrected Landsat imagery to measure glacier area
change in the Cordillera Blanca, Peru from 1987 to
2010, Remote Sensing of environment, 140: 165-178.
Chu, X., Yao, X., Duan, H., Chen, C., Li, J., and Pang, W.
2022: Glacier extraction based on high-spatial-
resolution remote-sensing images using a deep-learning
approach with attention mechanism, The Cryosphere,
16, 4273–4289, https://doi.org/10.5194/tc-16-4273-
2022.
D’Agata, C., Bocchiola, D., Soncini, A., Maragno, D.,
Smiraglia, C., & Diolaiuti, G. A. (2018). Recent area
and volume loss of Alpine glaciers in the Adda River of
Italy and their contribution to hydropower production.
Cold Regions Science and Technology, 148, 172–184.
doi:10.1016/j.coldregions.2017.12.010.
Deems, J. S., Painter, T. H., & Finnegan, D. C. (2013).
Lidar measurement of snow depth: a review. Journal of
Glaciology, 59 (215), 467–479. doi:10.3189/
2013jog12j154.
DEM GLO-30 Public - European Space Agency, Sinergise
(2021). Copernicus Global Digital Elevation Model.
Distributed by OpenTopography. Accessed: 2023-05-
25
Dozier, J., 1989: Spectral signature of alpine snow cover
from the Landsat Thematic Mapper. Remote Sensing of
Environment, 28, 9–22.
Frank, P., Winsvold, S.H, Kääb, A., Nagler, T., Schwaizer,
G, 2016, Glacier remote sensing using Sentinel-2. Part
II: Mapping glacier extents and surface facies, and
comparison to Landsat 8, Remote Sensing, 8(7):575
GLAMOS - Glacier Monitoring in Switzerland,
https://www.glamos.ch/en/#/B36-26, (access on
20/01/2025).
GLAMOS 1880-2021, The Swiss Glaciers 1880-22020/21,
Glaciological Reports No 1-142, Yearbooks of the
Cryospheric Commission of the Swiss Academy of
Sciences (SCNAT), published since 1964 by VAW /
ETH Zurich, doi:10.18752/glrep_series
GLAMOS (2022). Swiss Glacier Length Change, release
2022, Glacier Monitoring Switzerland, doi:10.18750/
lengthchange.2022.r2022. (access on 20/01/2025).
Glacier Inventory (1976): Müller, F., Caflisch, T. &
Müller, G. 1976, Firn und Eis der Schweizer Alpen
(Gletscherinventar). Publ. Nr. 57/57a. Geographisches
Institut, ETH Zürich, 2 Vols. & Maisch, M., Wipf, A.,
Denneler, B., Battaglia, J. & Benz, C. 2000, Die
Gletscher der Schweizer Alpen: Gletscherhochstand
1850, Aktuelle Vergletscherung, Gletscherschwund-
Szenarien. (Schlussbericht NFP 31). 2. Auflage. vdf
Hochschulverlag an der ETH Zürich, 373 pp. & Paul,
F. 2004, The new Swiss glacier inventory 2000 –
application of remote sensing and GIS. PhD Thesis,
Department of Geography, University of Zurich,
Schriftenreihe Physische Geographie, 52, 210 pp.
Glacier Inventory (2010): Fischer, M., Huss, M., Barboux,
C. & Hoelzle, M. 2014, The new Swiss Glacier
Inventory SGI2010: relevance of using high-resolution
source data in areas dominated by very small glaciers.
Arctic, Antarctic, and Alpine Research, 46, 933–945.
Glacier Inventory (2016) - Linsbauer, A., Huss, M., Hodel,
E., Bauder, A., Fischer, M., Weidmann, Y., Bärtschi, H.
& Schmassmann, E. 2021, The new Swiss Glacier
Inventory SGI2016: From a topographical to a
glaciological dataset. Frontiers in Earth Science, 22,
doi:10.3389/feart.2021.704189.
Hansch, R. Handbook of Random Forests, Theory and
Applications for Remote Sensing, Series in Computer
Vision: Volume 7, World Scientific Publishing Co Pte
Ltd (30 Nov. 2025)
Hock R., Truffer, M. (2024) Glacier hazards: Will they
change in the future? Arctic, Antarctic, and Alpine
Research, Volume 56, 2024 - Issue 1
Piermattei, L., Zemp, M., Sommer, C., Brun, F., Braun, M.
H., Andreassen, L. M., Belart, J. M. C., Berthier, E.,
Bhattacharya, A., Boehm Vock, L., Bolch, T., Dehecq,
A., Dussaillant, I., Falaschi, D., Florentine, C.,
Floricioiu, D., Ginzler, C., Guillet, G., Hugonnet, R.,
Huss, M., Kääb, A., King, O., Klug, C., Knuth, F.,
Krieger, L., La Frenierre, J., McNabb, R., McNeil, C.,
Prinz, R., Sass, L., Seehaus, T., Shean, D., Treichler,
D., Wendt, A., and Yang, R. (2024) Observing glacier
elevation changes from spaceborne optical and radar
sensors – an inter-comparison experiment using
ASTER and TanDEM-X data, The Cryosphere, 18,
3195–3230, https://doi.org/10.5194/tc-18-3195-2024,
2024.
Keshri, A. K., Shukla, A. and Gupta, R. P. (2009): ASTER
ratio indices for supraglacial terrain mapping',
International Journal of Remote Sensing,30:2,519 —
524
Li, S., Leinss, S., Hajnsek, I. (). Cross-Correlation Stacking
for Robust Offset Tracking Using SAR Image Time-
Series, IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, Volume: 14,
15 p.
Masek, J.G., Vermote, E.F., Saleous, N., Wolfe, R., Hall,
F.G., Huemmrich, F., Gao, F., Kutler, J., and Lim, T.K.
(2006). A Landsat surface reflectance data set for North