platform’s capacity to accelerate recruitment while
ensuring alignment with company values and
supporting more objective decision-making in HR.
6 CONCLUSIONS
The developed platform applies NLP and deep
learning models to analyse and select candidates
aligned with organizational values, achieving 96%
accuracy and a 12% reduction in selection errors. This
system not only optimizes the recruitment process by
identifying more compatible profiles, but also
improves cultural integration and objectivity in hiring
decisions, allowing the company to build more
cohesive teams aligned with strategic objectives.
REFERENCES
Álvarez-Carmona, M., Aranda, R., Rodríguez-Gonzalez, A.
Y., Fajardo-Delgado, D., Sánchez, M. G., Pérez-
Espinosa, H., Martínez-Miranda, J., Guerrero-
Rodríguez, R., Bustio-Martínez, L., & Díaz-Pacheco,
Á. (2022). Natural language processing applied to
tourism research: A systematic review and future
research directions. Journal of King Saud University -
Computer and Information Sciences, 34(10), 10125–
10144. https://doi.org/10.1016/j.jksuci.2022.10.010
Campion, E. D., & Campion, M. A. (2024). Impact of
machine learning on personnel selection.
Organizational Dynamics, 53(1), 101035. https://
doi.org/10.1016/J.ORGDYN.2024.101035
Cui, Y., Che, W., Liu, T., Qin, B., & Yang, Z. (2021). Pre-
Training with Whole Word Masking for Chinese
BERT. IEEE/ACM Transactions on Audio Speech and
Language Processing, 29, 3504–3514.
https://doi.org/10.1109/TASLP.2021.3124365
Delecraz, S., Eltarr, L., Becuwe, M., Bouxin, H., Boutin,
N., &Oullier, O. (2022). Responsible Artificial
Intelligence in Human Resources Technology: An
innovative inclusive and fair design matching algorithm
for job recruitment purposes. Journal of Responsible
Technology, 11. https://doi.org/10.1016/j.jrt.2022.1
00041
Feng, S. (2023). Job satisfaction, management sentiment, and
financial performance: Text analysis with job reviews
from indeed.com. International Journal of Information
Management Data Insights, 3(1). https://doi.org/10.1
016/j.jjimei.2023.100155
Fernandes, T., São, H., Pereira, J., & Pereira, V. (2023).
Artificial intelligence applied to potential assessment
and talent identification in an organizational context.
Information Sciences, 2. https://doi.org/10.1016/
j.heliyon.2023.e14694
Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu,
X., Naumann, T., Gao, J., & Poon, H. (2022). Domain-
Specific Language Model Pretraining for Biomedical
Natural Language Processing. ACM Transactions on
Computing for Healthcare, 3(1). https://doi.org/
10.1145/3458754
He, W., Farrahi, K., Chen, B., Peng, B., & Villavicencio, A.
(2024). Representation transfer and data cleaning in
multi-views for text simplification. Pattern Recognition
Letters, 177, 40–46. https://doi.org/10.1016/J.PA
TREC.2023.11.011
Huang, X., Yang, F., Zheng, J., Feng, C., & Zhang, L.
(2023). Personalized human resource management via
HR analytics and artificial intelligence: Theory and
implications. Asia Pacific Management Review, 28(4),
598–610. https://doi.org/10.1016/j.apmrv.2023.04.004
Koutsoumpis, A., Ghassemi, S., Oostrom, J. K., Holtrop,
D., van Breda, W., Zhang, T., & de Vries, R. E. (2024).
Beyond traditional interviews: Psychometric analysis
of asynchronous video interviews for personality and
interview performance evaluation using machine
learning. Computers in Human Behavior, 154.
https://doi.org/10.1016/j.chb.2023.108128
Latifi, S., Jannach, D., & Ferraro, A. (2022). Sequential
recommendation: A study on transformers, nearest
neighbors and sampled metrics. Information Sciences,
609, 660–678. https://doi.org/10.1016/j.ins.2022.07.079
Latifi, S., Mauro, N., &Jannach, D. (2021). Session-aware
recommendation: A surprising quest for the state-of-
the-art. Information Sciences, 573, 291–315.
https://doi.org/10.1016/j.ins.2021.05.048
Martin-Raugh, M. P., Leong, C. W., Roohr, K. C., & Chen,
X. (2023). Perceived conscientiousness and openness to
experience through the relationship between vocal and
visual features and hiring decision in the interview.
Computers in Human Behavior Reports, 10.
https://doi.org/10.1016/j.chbr.2023.100272
Raman, R., Venugopalan, M., & Kamal, A. (2024).
Evaluating human resources management literacy: A
performance analysis of ChatGPT and bard. Heliyon,
10(5). https://doi.org/10.1016/j.heliyon.2024.e27026
Radonjić, A., Duarte, H., & Pereira, N. (2024). Artificial
intelligence and HRM: HR managers’ perspective on
decisiveness and challenges. European Management
Journal, 42(1), 57–66. https://doi.org/10.101
6/J.EMJ.2022.07.001
van Atteveldt, W., van der Velden, M. A. C. G., &Boukes,
M. (2021). The Validity of Sentiment Analysis:
Comparing Manual Annotation, Crowd-Coding, Dictio-
nary Approaches, and Machine Learning Algorithms.
Communication Methods and Measures, 15(2), 121-140.
https://doi.org/10.1080/19312458.2020.1869198
Wang, L., Zhou, Y., Sanders, K., Marler, J. H., & Zou, Y.
(2024). Determinants of effective HR analytics
Implementation: An In-Depth review and a dynamic
framework for future research. Journal of Business
Research, 170, 114312. https://doi.org/10.1016/J.
JBUSRES.2023.114312.