
REFERENCES
Campos, J., Jaramillo, S., Morales, L., Camacho, O.,
Ch
´
avez, D., and Pozo, D. (2018). Pso tuning for fuzzy
pd+ i controller applied to a mobile robot trajectory
control. In 2018 International Conference on Infor-
mation Systems and Computer Science (INCISCOS),
pages 62–68. IEEE.
de Moura Oliveira, P., Soares, F., and Cardoso, A. (2022).
Pocket-sized portable labs: Control engineering prac-
tice made easy in covid-19 pandemic times. Ifac-
papersonline, 55(17):150–155.
Espin, J., Castrillon, F., Leiva, H., and Camacho, O. (2022).
A modified smith predictor based–sliding mode con-
trol approach for integrating processes with dead
time. Alexandria Engineering Journal, 61(12):10119–
10137.
Fliess, M. and Join, C. (2013). Model-free control. In-
ternational journal of control, vol. 86, no. 12, pp.
2228–2252.
Gude, J. J. (2023). Contributions to fractional-order mod-
elling and control of dynamic systems: A theoretical
and practical approach. PhD thesis, Universidad de
Deusto.
Gude, J. J., Garc
´
ıa Bringas, P., Herrera, M., Rinc
´
on, L.,
Di Teodoro, A., and Camacho, O. (2024). Fractional-
order model identification based on the process reac-
tion curve: A unified framework for chemical pro-
cesses. Results in Engineering, 21:101757.
Jain, A. and Goodson, K. E. (2011). Thermal microdevices
for biological and biomedical applications. Journal of
Thermal Biology, 36(4):209–218.
Kocaarslan, I., C¸ am, E., and Tiryaki, H. (2006). A fuzzy
logic controller application for thermal power plants.
Energy conversion and management, 47(4):442–458.
Liptak, B. G., Piovoso, M. J., Shinskey, F. G., Eren, H.,
Totherow, G. K., Jamison, J. E., Morgan, D., Hertanu,
H. I., Marszal, E. M., Berge, J., et al. (2018). Instru-
ment engineers’ handbook, volume two: Process con-
trol and optimization. CRC press.
May, G. S. and Spanos, C. J. (2006). Fundamentals of semi-
conductor manufacturing and process control. John
Wiley & Sons.
Mejia, C., Salazar, E., and Camacho, O. (2022). A compar-
ative experimental evaluation of various smith predic-
tor approaches for a thermal process with large dead
time. Alexandria Engineering Journal, 61(12):9377–
9394.
Obando, C., Rojas, R., Ulloa, F., and Camacho, O.
(2023). Dual-mode based sliding mode control ap-
proach for nonlinear chemical processes. ACS omega,
8(10):9511–9525.
Patel, K. M. (2023). A practical reinforcement learning im-
plementation approach for continuous process control.
Computers & Chemical Engineering, 174:108232.
Plawsky, J. L. (2020). Transport phenomena fundamentals.
CRC press.
Precup, R.-E., Radac, M.-B., Roman, R.-C., and Petriu,
E. M. (2017). Model-free sliding mode control of non-
linear systems: Algorithms and experiments. Informa-
tion Sciences, 381:176–192.
Sardella, M. F., Serrano, M. E., Camacho, O., and Scaglia,
G. J. (2019). Design and application of a linear al-
gebra based controller from a reduced-order model
for regulation and tracking of chemical processes un-
der uncertainties. Industrial & Engineering Chemistry
Research, 58(33):15222–15231.
Schwenzer, M., Ay, M., Bergs, T., and Abel, D. (2021).
Review on model predictive control: An engineering
perspective. The International Journal of Advanced
Manufacturing Technology, 117(5):1327–1349.
Smith, C. A. and Corripio, A. B. (2005). Principles and
practices of automatic process control. John wiley &
sons.
Tanaka, K., Wang, L., and Camacho, O. (2023). Fuzzy
control for time-delay systems. IEEE Transactions on
Fuzzy Systems, 31(4):1122–1135.
V
´
asquez, M., Yanascual, J., Herrera, M., Prado, A., and
Camacho, O. (2023). A hybrid sliding mode control
based on a nonlinear pid surface for nonlinear chem-
ical processes. Engineering Science and Technology,
an International Journal, 40:101361.
Wang, D., Tan, D., and Liu, L. (2018). Particle swarm op-
timization algorithm: an overview. Soft computing,
22(2):387–408.
Wang, L., Gude, J. J., and Patel, K. M. (2022). Fractional
pid for industrial thermal processes. Journal of Pro-
cess Control, 110:45–58.
Zhang, H. and Liu, D. (2006). Fuzzy modeling and fuzzy
control. Springer Science & Business Media.
SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
216