its reliability and accuracy. Real-world wheel wear
data from stacker cranes will be used to assess the
consistency between simulated and observed wear
behaviour. These experiments are excepted to provide
valuable insights for validating the proposed wear
amplification method, thereby enhancing its practical
applicability in industrial fields.
ACKNOWLEDGEMENTS
The research has been conducted within the
industrielle Gemeinschaftsforschung [collective
industrial research] (IGF) project “VerStaRad:
Verschleißverhalten von Stahllaufrädern an
Regalbediengeräten” (IGF project number 23053)
basis of a decision of the German Bundestag [Federal
Parliament].
REFERENCES
Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah
Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M.
(2022). On Predictive Maintenance in Industry 4.0:
Overview, Models, and Challenges. Applied Sciences,
12(16). https://doi.org/10.3390/app12168081
Bosso, N., & Zampieri, N. (2019). Numerical stability of
co-simulation approaches to evaluate wheel profile
evolution due to wear. International Journal of Rail
Transportation, 8(2), 159–179. https://doi.org/10.1080/
23248378.2019.1672588
Braghin, F., Lewis, R., Dwyer-Joyce, R., & Bruni, S.
(2006). A mathematical model to predict railway wheel
profile evolution due to wear. Wear, 261(11-12), 1253–
1264. https://doi.org/10.1016/j.wear.2006.03.025
Große, K., Sartorius, J., & Fittinghoff, M. (2018).
Predictive Maintenance at Automatic Storage Retrieval
Machines (ASRS) with Vibration Sensors. Logistics
Journal. Advance online publication. https://doi.org/
10.2195/LJ_NOTREV_GROSSE_EN_201812_01
Heinrich, G., & Klüppel, M. (2008). Rubber friction, tread
deformation and tire traction. Wear, 265(7-8), 1052–
1060. https://doi.org/10.1016/j.wear.2008.02.016
Iwnicki, S., Nielsen, J. C. O., & Tao, G. (2023). Out-of-
round railway wheels and polygonisation. Vehicle
System Dynamics, 61(7), 1787–1830. https://doi.org/
10.1080/00423114.2023.2194544
Jendel, T. (2002). Prediction of wheel profile wear—
comparisons with field measurements. Wear, 253(1–2),
89–99.
Laile, M. M., & Fottner, J. (2021). Computing a Realistic
Load Collective for the Rail-wheel Contact of Stacker
Cranes. In 2021 The 8th International Conference on
Industrial Engineering and Applications(Europe) (pp.
46–50). ACM. https://doi.org/10.1145/3463858.346
3862
Mostofi, A., & Gohar, R. (1980). Pressure distribution
between closely contacting surfaces. Journal of
Mechanical Engineering, 22(5), 251–259.
Rücker, A., Rief, J., & Fottner, J. (2020). An investigation
of mean energy demand, performance and reference
cycles for stacker cranes. FME Transactions, 48(2),
307–312. https://doi.org/10.5937/fme2002307R
Sichani, M. (2013). Wheel-Rail Contact Modelling in
Vehicle Dynamics Simulation [Disseration]. KTH
Royal Institute of Technology, Stockholm,Sweden.
Siciliano, G., Durek-Linn, A., & Fottner, J. Optimization of
the Bottleneck Caused by Stacker Cranes in Dynamic
Hybrid Pallet Warehouses and Investigation of the
Influence of the Input/Output Area on Performance. In
12th International Conference on Simulation and
Modeling Methodologies, Technologies and
Applications (SIMULTECH 2022) (pp. 123–130).
https://doi.org/10.5220/0011313600003274
Tunna, J., Sinclair, J., & Perez, J. (2007). A Review of
wheel wear and rolling contact fatigue. Proceedings of
the Institution of Mechanical Engineers Part F Journal
of Rail and Rapid Transit, 221
(2), 271–289.
https://doi.org/10.1243/0954409JRRT72
Vollebregt, E. A., Weidemann, C., & Kienberger, A. (Eds.)
(2011). Use of "CONTACT" in multi-body vehicle
dynamics and profile wear simulation: initial results.
Yang, Y., Ling, L., Wang, J., & Zhai, W. (2023). A
numerical study on tread wear and fatigue damage of
railway wheels subjected to anti-slip control. Friction,
11(8), 1470–1492. https://doi.org/10.1007/s40544-022-
0684-8
Yu, M., & Fottner, J. (Eds.) (2024). Entwicklung und
Validierung einer praxisgerechten Methode zur
Verschleißberechnung im Rad-Schiene-System von
Regalbediengeräten (German). Logistics Journal.
Zhang, J., Xu, B., & Guan, X. (2013). A combined
simulation procedure for wear assessment of the HXN5
locomotive. Wear, 314(1-2), 305–313. https://doi.org/
10.1016/j.wear.2013.11.042